factor/vm/allot.hpp

84 lines
2.6 KiB
C++

namespace factor {
// It is up to the caller to fill in the object's fields in a
// meaningful fashion!
// Allocates memory
inline code_block* factor_vm::allot_code_block(cell size,
code_block_type type) {
cell block_size = size + sizeof(code_block);
code_block* block = code->allocator->allot(block_size);
if (block == NULL) {
// If allocation failed, do a full GC and compact the code heap.
// A full GC that occurs as a result of the data heap filling up does not
// trigger a compaction. This setup ensures that most GCs do not compact
// the code heap, but if the code fills up, it probably means it will be
// fragmented after GC anyway, so its best to compact.
primitive_compact_gc();
block = code->allocator->allot(block_size);
// Insufficient room even after code GC, give up
if (block == NULL) {
std::cout << "Code heap used: " << code->allocator->occupied_space()
<< "\n";
std::cout << "Code heap free: " << code->allocator->free_space << "\n";
std::cout << "Request : " << block_size << "\n";
fatal_error("Out of memory in allot_code_block", 0);
}
}
// next time we do a minor GC, we have to trace this code block, since
// the fields of the code_block struct might point into nursery or aging
this->code->write_barrier(block);
block->set_type(type);
return block;
}
// Allocates memory
inline object* factor_vm::allot_large_object(cell type, cell size) {
// If tenured space does not have enough room, collect and compact
cell required_free = size + data->high_water_mark();
if (!data->tenured->can_allot_p(required_free)) {
primitive_compact_gc();
// If it still won't fit, grow the heap
if (!data->tenured->can_allot_p(required_free)) {
gc(COLLECT_GROWING_DATA_HEAP_OP, size);
}
}
object* obj = data->tenured->allot(size);
// Allows initialization code to store old->new pointers
// without hitting the write barrier in the common case of
// a nursery allocation
write_barrier(obj, size);
obj->initialize(type);
return obj;
}
// Allocates memory
inline object* factor_vm::allot_object(cell type, cell size) {
FACTOR_ASSERT(!current_gc);
bump_allocator *nursery = data->nursery;
// If the object is bigger than the nursery, allocate it in tenured space
if (size >= nursery->size)
return allot_large_object(type, size);
// If the object is smaller than the nursery, allocate it in the nursery,
// after a GC if needed
if (nursery->here + size > nursery->end)
primitive_minor_gc();
object* obj = nursery->allot(size);
obj->initialize(type);
return obj;
}
}