factor/vm/data_heap.cpp

156 lines
4.4 KiB
C++

#include "master.hpp"
namespace factor {
data_heap::data_heap(bump_allocator* vm_nursery,
cell young_size_,
cell aging_size_,
cell tenured_size_) {
young_size_ = align(young_size_, deck_size);
aging_size_ = align(aging_size_, deck_size);
tenured_size_ = align(tenured_size_, deck_size);
young_size = young_size_;
aging_size = aging_size_;
tenured_size = tenured_size_;
cell total_size = young_size + 2 * aging_size + tenured_size + deck_size;
seg = new segment(total_size, false);
cell cards_size = total_size / card_size;
cards = new card[cards_size];
cards_end = cards + cards_size;
memset(cards, 0, cards_size);
cell decks_size = total_size / deck_size;
decks = new card_deck[decks_size];
decks_end = decks + decks_size;
memset(decks, 0, decks_size);
start = align(seg->start, deck_size);
tenured = new tenured_space(tenured_size, start);
aging = new aging_space(aging_size, tenured->end);
aging_semispace = new aging_space(aging_size, aging->end);
// Initialize vm nursery
vm_nursery->here = aging_semispace->end;
vm_nursery->start = aging_semispace->end;
vm_nursery->end = vm_nursery->start + young_size;
vm_nursery->size = young_size;
nursery = vm_nursery;
FACTOR_ASSERT(seg->end - nursery->end <= deck_size);
}
data_heap::~data_heap() {
delete seg;
delete aging;
delete aging_semispace;
delete tenured;
delete[] cards;
delete[] decks;
}
data_heap* data_heap::grow(bump_allocator* vm_nursery, cell requested_bytes) {
FACTOR_ASSERT(vm_nursery->occupied_space() == 0);
cell new_tenured_size = 2 * tenured_size + requested_bytes;
return new data_heap(vm_nursery, young_size, aging_size, new_tenured_size);
}
template <typename Generation> void data_heap::clear_cards(Generation* gen) {
cell first_card = addr_to_card(gen->start - start);
cell last_card = addr_to_card(gen->end - start);
memset(&cards[first_card], 0, last_card - first_card);
}
template <typename Generation> void data_heap::clear_decks(Generation* gen) {
cell first_deck = addr_to_deck(gen->start - start);
cell last_deck = addr_to_deck(gen->end - start);
memset(&decks[first_deck], 0, last_deck - first_deck);
}
void data_heap::reset_nursery() {
nursery->flush();
}
void data_heap::reset_aging() {
aging->flush();
clear_cards(aging);
clear_decks(aging);
aging->starts.clear_object_start_offsets();
}
void data_heap::reset_tenured() {
clear_cards(tenured);
clear_decks(tenured);
}
bool data_heap::high_fragmentation_p() {
return tenured->largest_free_block() <= high_water_mark();
}
bool data_heap::low_memory_p() {
return tenured->free_space <= high_water_mark();
}
void data_heap::mark_all_cards() {
memset(cards, 0xff, cards_end - cards);
memset(decks, 0xff, decks_end - decks);
}
void factor_vm::set_data_heap(data_heap* data_) {
data = data_;
cards_offset = (cell)data->cards - addr_to_card(data->start);
decks_offset = (cell)data->decks - addr_to_deck(data->start);
}
data_heap_room factor_vm::data_room() {
data_heap_room room;
room.nursery_size = data->nursery->size;
room.nursery_occupied = data->nursery->occupied_space();
room.nursery_free = data->nursery->free_space();
room.aging_size = data->aging->size;
room.aging_occupied = data->aging->occupied_space();
room.aging_free = data->aging->free_space();
room.tenured_size = data->tenured->size;
room.tenured_occupied = data->tenured->occupied_space();
room.tenured_total_free = data->tenured->free_space;
room.tenured_contiguous_free = data->tenured->largest_free_block();
room.tenured_free_block_count = data->tenured->free_block_count;
room.cards = data->cards_end - data->cards;
room.decks = data->decks_end - data->decks;
room.mark_stack = mark_stack.capacity() * sizeof(cell);
return room;
}
// Allocates memory
void factor_vm::primitive_data_room() {
data_heap_room room = data_room();
ctx->push(tag<byte_array>(byte_array_from_value(&room)));
}
// Allocates memory
cell factor_vm::instances(cell type) {
primitive_full_gc();
std::vector<cell> objects;
auto object_accumulator = [&](object* obj) {
if (type == TYPE_COUNT || obj->type() == type)
objects.push_back(tag_dynamic(obj));
};
each_object(object_accumulator);
return std_vector_to_array(objects);
}
// Allocates memory
void factor_vm::primitive_all_instances() {
ctx->push(instances(TYPE_COUNT));
}
}