factor/basis/inverse/inverse.factor

290 lines
7.9 KiB
Factor

! Copyright (C) 2007, 2009 Daniel Ehrenberg.
! See http://factorcode.org/license.txt for BSD license.
USING: accessors arrays assocs bit-arrays byte-arrays classes
classes.tuple combinators combinators.short-circuit
combinators.smart continuations effects fry generalizations
kernel locals macros make math math.functions namespaces
quotations sbufs sequences sequences.generalizations slots
splitting stack-checker strings summary vectors words
words.symbol ;
IN: inverse
ERROR: fail ;
M: fail summary drop "Matching failed" ;
: assure ( ? -- ) [ fail ] unless ; inline
: =/fail ( obj1 obj2 -- ) = assure ; inline
! Inverse of a quotation
: define-inverse ( word quot -- ) "inverse" set-word-prop ;
: define-dual ( word1 word2 -- )
2dup swap [ 1quotation define-inverse ] 2bi@ ;
: define-involution ( word -- ) dup 1quotation define-inverse ;
: define-math-inverse ( word quot1 quot2 -- )
pick 1quotation 3array "math-inverse" set-word-prop ;
:: define-pop-inverse ( word n quot -- )
word n "pop-length" set-word-prop
word quot "pop-inverse" set-word-prop ;
ERROR: bad-math-inverse ;
: next ( revquot -- revquot* first )
[ bad-math-inverse ] [ unclip-slice ] if-empty ;
: constant-word? ( word -- ? )
stack-effect [ out>> length 1 = ] [ in>> empty? ] bi and ;
: assure-constant ( constant -- quot )
dup word? [ bad-math-inverse ] when 1quotation ;
: swap-inverse ( math-inverse revquot -- revquot* quot )
next assure-constant rot second '[ @ swap @ ] ;
: pull-inverse ( math-inverse revquot const -- revquot* quot )
assure-constant rot first compose ;
: undo-literal ( object -- quot ) [ =/fail ] curry ;
PREDICATE: normal-inverse < word "inverse" word-prop >boolean ;
PREDICATE: math-inverse < word "math-inverse" word-prop >boolean ;
PREDICATE: pop-inverse < word "pop-length" word-prop >boolean ;
UNION: explicit-inverse normal-inverse math-inverse pop-inverse ;
: enough? ( stack word -- ? )
dup deferred? [ 2drop f ] [
[ [ length ] [ 1quotation inputs ] bi* >= ]
[ 3drop f ] recover
] if ;
: fold-word ( stack word -- stack )
2dup enough?
[ 1quotation with-datastack ]
[ [ [ literalize , ] each ] [ , ] bi* { } ]
if ;
: fold ( quot -- folded-quot )
[ { } [ fold-word ] reduce % ] [ ] make ;
ERROR: no-recursive-inverse ;
SYMBOL: visited
: flattenable? ( object -- ? )
{
[ word? ]
[ primitive? not ]
[ explicit-inverse? not ]
} 1&& ;
: flatten ( quot -- expanded )
visited get over suffix visited [
[
dup flattenable? [
def>>
[ visited get member-eq? [ no-recursive-inverse ] when ]
[ flatten ]
bi
] [ 1quotation ] if
] map concat
] with-variable ;
ERROR: undefined-inverse ;
GENERIC: inverse ( revquot word -- revquot* quot )
M: object inverse undo-literal ;
M: symbol inverse undo-literal ;
M: word inverse undefined-inverse ;
M: normal-inverse inverse
"inverse" word-prop ;
M: math-inverse inverse
"math-inverse" word-prop
swap next dup \ swap =
[ drop swap-inverse ] [ pull-inverse ] if ;
M: pop-inverse inverse
[ "pop-length" word-prop cut-slice swap >quotation ]
[ "pop-inverse" word-prop ] bi compose call( -- quot ) ;
: (undo) ( revquot -- )
[ unclip-slice inverse % (undo) ] unless-empty ;
: [undo] ( quot -- undo )
flatten fold reverse [ (undo) ] [ ] make ;
MACRO: undo ( quot -- quot ) [undo] ;
! Inverse of selected words
\ swap define-involution
\ dup [ [ =/fail ] keep ] define-inverse
\ 2dup [ over =/fail over =/fail ] define-inverse
\ 3dup [ pick =/fail pick =/fail pick =/fail ] define-inverse
\ pick [ [ pick ] dip =/fail ] define-inverse
\ bi@ 1 [ [undo] '[ _ bi@ ] ] define-pop-inverse
\ tri@ 1 [ [undo] '[ _ tri@ ] ] define-pop-inverse
\ bi* 2 [ [ [undo] ] bi@ '[ _ _ bi* ] ] define-pop-inverse
\ tri* 3 [ [ [undo] ] tri@ '[ _ _ _ tri* ] ] define-pop-inverse
\ not define-involution
\ >boolean [ dup { t f } member-eq? assure ] define-inverse
\ tuple>array \ >tuple define-dual
\ reverse define-involution
\ undo 1 [ ] define-pop-inverse
\ map 1 [ [undo] '[ dup sequence? assure _ map ] ] define-pop-inverse
\ e^ \ log define-dual
\ sq \ sqrt define-dual
ERROR: missing-literal ;
: assert-literal ( n -- n )
dup { [ word? ] [ symbol? not ] } 1&&
[ missing-literal ] when ;
\ + [ - ] [ - ] define-math-inverse
\ - [ + ] [ - ] define-math-inverse
\ * [ / ] [ / ] define-math-inverse
\ / [ * ] [ / ] define-math-inverse
\ ^ [ recip ^ ] [ swap [ log ] bi@ / ] define-math-inverse
\ ? 2 [
[ assert-literal ] bi@
[ swap [ over = ] dip swap [ 2drop f ] [ = [ t ] [ fail ] if ] if ]
2curry
] define-pop-inverse
DEFER: __
\ __ [ drop ] define-inverse
: both ( object object -- object )
dupd assert= ;
\ both [ dup ] define-inverse
{
{ >array array? }
{ >vector vector? }
{ >fixnum fixnum? }
{ >bignum bignum? }
{ >bit-array bit-array? }
{ >float float? }
{ >byte-array byte-array? }
{ >string string? }
{ >sbuf sbuf? }
{ >quotation quotation? }
} [ '[ dup _ execute assure ] define-inverse ] assoc-each
: assure-length ( seq length -- )
swap length =/fail ; inline
: assure-array ( array -- array )
dup array? assure ; inline
: undo-narray ( array n -- ... )
[ assure-array ] dip
[ assure-length ] [ firstn ] 2bi ; inline
\ 1array [ 1 undo-narray ] define-inverse
\ 2array [ 2 undo-narray ] define-inverse
\ 3array [ 3 undo-narray ] define-inverse
\ 4array [ 4 undo-narray ] define-inverse
\ narray 1 [ '[ _ undo-narray ] ] define-pop-inverse
\ first [ 1array ] define-inverse
\ first2 [ 2array ] define-inverse
\ first3 [ 3array ] define-inverse
\ first4 [ 4array ] define-inverse
\ prefix \ unclip define-dual
\ suffix \ unclip-last define-dual
\ append 1 [ [ ?tail assure ] curry ] define-pop-inverse
\ prepend 1 [ [ ?head assure ] curry ] define-pop-inverse
: assure-same-class ( obj1 obj2 -- )
[ class-of ] same? assure ; inline
\ output>sequence 2 [ [undo] '[ dup _ assure-same-class _ input<sequence ] ] define-pop-inverse
\ input<sequence 1 [ [undo] '[ _ { } output>sequence ] ] define-pop-inverse
! conditionals
:: undo-if-empty ( result a b -- seq )
a call( -- b ) result = [ { } ] [ result b [undo] call( a -- b ) ] if ;
:: undo-if* ( result a b -- boolean )
b call( -- b ) result = [ f ] [ result a [undo] call( a -- b ) ] if ;
\ if-empty 2 [ swap [ undo-if-empty ] 2curry ] define-pop-inverse
\ if* 2 [ swap [ undo-if* ] 2curry ] define-pop-inverse
! Constructor inverse
: deconstruct-pred ( class -- quot )
predicate-def [ dupd call assure ] curry ;
: slot-readers ( class -- quot )
all-slots [ name>> reader-word 1quotation ] map [ cleave ] curry ;
: ?wrapped ( object -- wrapped )
dup wrapper? [ wrapped>> ] when ;
: boa-inverse ( class -- quot )
[ deconstruct-pred ] [ slot-readers ] bi compose ;
\ boa 1 [ ?wrapped boa-inverse ] define-pop-inverse
: empty-inverse ( class -- quot )
deconstruct-pred
[ tuple-slots [ ] any? [ fail ] when ]
compose ;
\ new 1 [ ?wrapped empty-inverse ] define-pop-inverse
! More useful inverse-based combinators
: recover-fail ( try fail -- )
[ drop call ] [
nipd dup fail?
[ drop call ] [ nip throw ] if
] recover ; inline
: true-out ( quot effect -- quot' )
out>> length '[ @ _ ndrop t ] ;
: false-recover ( effect -- quot )
in>> length [ ndrop f ] curry [ recover-fail ] curry ;
: [matches?] ( quot -- undoes?-quot )
[undo] dup infer [ true-out ] [ false-recover ] bi curry ;
MACRO: matches? ( quot -- quot' ) [matches?] ;
ERROR: no-match ;
M: no-match summary drop "Fall through in switch" ;
: recover-chain ( seq -- quot )
[ no-match ] [ swap \ recover-fail 3array >quotation ] reduce ;
: [switch] ( quot-alist -- quot )
[ dup quotation? [ [ ] swap 2array ] when ] map
reverse [ [ [undo] ] dip compose ] { } assoc>map
recover-chain ;
MACRO: switch ( quot-alist -- quot ) [switch] ;