factor/vm/data_heap.cpp

272 lines
6.9 KiB
C++
Executable File

#include "master.hpp"
namespace factor
{
void factor_vm::init_card_decks()
{
cards_offset = (cell)data->cards - addr_to_card(data->start);
decks_offset = (cell)data->decks - addr_to_deck(data->start);
}
data_heap::data_heap(cell young_size_,
cell aging_size_,
cell tenured_size_)
{
young_size_ = align(young_size_,deck_size);
aging_size_ = align(aging_size_,deck_size);
tenured_size_ = align(tenured_size_,deck_size);
young_size = young_size_;
aging_size = aging_size_;
tenured_size = tenured_size_;
cell total_size = young_size + 2 * aging_size + tenured_size + deck_size;
seg = new segment(total_size,false);
cell cards_size = addr_to_card(total_size);
cards = new card[cards_size];
cards_end = cards + cards_size;
memset(cards,0,cards_size);
cell decks_size = addr_to_deck(total_size);
decks = new card_deck[decks_size];
decks_end = decks + decks_size;
memset(decks,0,decks_size);
start = align(seg->start,deck_size);
tenured = new tenured_space(tenured_size,start);
aging = new aging_space(aging_size,tenured->end);
aging_semispace = new aging_space(aging_size,aging->end);
nursery = new nursery_space(young_size,aging_semispace->end);
assert(seg->end - nursery->end <= deck_size);
}
data_heap::~data_heap()
{
delete seg;
delete nursery;
delete aging;
delete aging_semispace;
delete tenured;
delete[] cards;
delete[] decks;
}
data_heap *data_heap::grow(cell requested_bytes)
{
cell new_tenured_size = (tenured_size * 2) + requested_bytes;
return new data_heap(young_size,
aging_size,
new_tenured_size);
}
template<typename Generation> void data_heap::clear_cards(Generation *gen)
{
cell first_card = addr_to_card(gen->start - start);
cell last_card = addr_to_card(gen->end - start);
memset(&cards[first_card],0,last_card - first_card);
}
template<typename Generation> void data_heap::clear_decks(Generation *gen)
{
cell first_deck = addr_to_deck(gen->start - start);
cell last_deck = addr_to_deck(gen->end - start);
memset(&decks[first_deck],0,last_deck - first_deck);
}
void data_heap::reset_generation(nursery_space *gen)
{
gen->here = gen->start;
}
void data_heap::reset_generation(aging_space *gen)
{
gen->here = gen->start;
clear_cards(gen);
clear_decks(gen);
gen->starts.clear_object_start_offsets();
}
void data_heap::reset_generation(tenured_space *gen)
{
clear_cards(gen);
clear_decks(gen);
}
bool data_heap::low_memory_p()
{
return (tenured->free_space() <= nursery->size + aging->size);
}
void data_heap::mark_all_cards()
{
memset(cards,-1,cards_end - cards);
memset(decks,-1,decks_end - decks);
}
void factor_vm::set_data_heap(data_heap *data_)
{
data = data_;
nursery = *data->nursery;
init_card_decks();
}
void factor_vm::init_data_heap(cell young_size, cell aging_size, cell tenured_size)
{
set_data_heap(new data_heap(young_size,aging_size,tenured_size));
}
/* Size of the object pointed to by an untagged pointer */
cell object::size() const
{
if(free_p()) return ((free_heap_block *)this)->size();
switch(type())
{
case ARRAY_TYPE:
return align(array_size((array*)this),data_alignment);
case BIGNUM_TYPE:
return align(array_size((bignum*)this),data_alignment);
case BYTE_ARRAY_TYPE:
return align(array_size((byte_array*)this),data_alignment);
case STRING_TYPE:
return align(string_size(string_capacity((string*)this)),data_alignment);
case TUPLE_TYPE:
{
tuple_layout *layout = (tuple_layout *)UNTAG(((tuple *)this)->layout);
return align(tuple_size(layout),data_alignment);
}
case QUOTATION_TYPE:
return align(sizeof(quotation),data_alignment);
case WORD_TYPE:
return align(sizeof(word),data_alignment);
case FLOAT_TYPE:
return align(sizeof(boxed_float),data_alignment);
case DLL_TYPE:
return align(sizeof(dll),data_alignment);
case ALIEN_TYPE:
return align(sizeof(alien),data_alignment);
case WRAPPER_TYPE:
return align(sizeof(wrapper),data_alignment);
case CALLSTACK_TYPE:
return align(callstack_size(untag_fixnum(((callstack *)this)->length)),data_alignment);
default:
critical_error("Invalid header",(cell)this);
return 0; /* can't happen */
}
}
/* The number of cells from the start of the object which should be scanned by
the GC. Some types have a binary payload at the end (string, word, DLL) which
we ignore. */
cell object::binary_payload_start() const
{
if(free_p()) return 0;
switch(type())
{
/* these objects do not refer to other objects at all */
case FLOAT_TYPE:
case BYTE_ARRAY_TYPE:
case BIGNUM_TYPE:
case CALLSTACK_TYPE:
return 0;
/* these objects have some binary data at the end */
case WORD_TYPE:
return sizeof(word) - sizeof(cell) * 3;
case ALIEN_TYPE:
return sizeof(cell) * 3;
case DLL_TYPE:
return sizeof(cell) * 2;
case QUOTATION_TYPE:
return sizeof(quotation) - sizeof(cell) * 2;
case STRING_TYPE:
return sizeof(string);
/* everything else consists entirely of pointers */
case ARRAY_TYPE:
return array_size<array>(array_capacity((array*)this));
case TUPLE_TYPE:
return tuple_size(untag<tuple_layout>(((tuple *)this)->layout));
case WRAPPER_TYPE:
return sizeof(wrapper);
default:
critical_error("Invalid header",(cell)this);
return 0; /* can't happen */
}
}
data_heap_room factor_vm::data_room()
{
data_heap_room room;
room.nursery_size = nursery.size;
room.nursery_occupied = nursery.occupied_space();
room.nursery_free = nursery.free_space();
room.aging_size = data->aging->size;
room.aging_occupied = data->aging->occupied_space();
room.aging_free = data->aging->free_space();
room.tenured_size = data->tenured->size;
room.tenured_occupied = data->tenured->occupied_space();
room.tenured_total_free = data->tenured->free_space();
room.tenured_contiguous_free = data->tenured->largest_free_block();
room.tenured_free_block_count = data->tenured->free_block_count();
room.cards = data->cards_end - data->cards;
room.decks = data->decks_end - data->decks;
room.mark_stack = data->tenured->mark_stack.capacity() * sizeof(cell);
return room;
}
void factor_vm::primitive_data_room()
{
data_heap_room room = data_room();
dpush(tag<byte_array>(byte_array_from_value(&room)));
}
struct object_accumulator {
cell type;
std::vector<cell> objects;
explicit object_accumulator(cell type_) : type(type_) {}
void operator()(object *obj)
{
if(type == TYPE_COUNT || obj->type() == type)
objects.push_back(tag_dynamic(obj));
}
};
cell factor_vm::instances(cell type)
{
object_accumulator accum(type);
each_object(accum);
cell object_count = accum.objects.size();
data_roots.push_back(data_root_range(&accum.objects[0],object_count));
array *objects = allot_array(object_count,false_object);
memcpy(objects->data(),&accum.objects[0],object_count * sizeof(cell));
data_roots.pop_back();
return tag<array>(objects);
}
void factor_vm::primitive_all_instances()
{
primitive_full_gc();
dpush(instances(TYPE_COUNT));
}
cell factor_vm::find_all_words()
{
return instances(WORD_TYPE);
}
}