factor/basis/math/functions/functions.factor

278 lines
5.7 KiB
Factor

! Copyright (C) 2004, 2008 Slava Pestov.
! See http://factorcode.org/license.txt for BSD license.
USING: math kernel math.constants math.private math.bits
math.libm combinators math.order sequences ;
IN: math.functions
: >fraction ( a/b -- a b )
[ numerator ] [ denominator ] bi ; inline
: rect> ( x y -- z )
dup 0 = [ drop ] [ complex boa ] if ; inline
GENERIC: sqrt ( x -- y ) foldable
M: real sqrt
>float dup 0.0 < [ neg fsqrt 0.0 swap rect> ] [ fsqrt ] if ;
: factor-2s ( n -- r s )
#! factor an integer into 2^r * s
dup 0 = [ 1 ] [
0 swap [ dup even? ] [ [ 1 + ] [ 2/ ] bi* ] while
] if ; inline
<PRIVATE
GENERIC# ^n 1 ( z w -- z^w ) foldable
: (^n) ( z w -- z^w )
make-bits 1 [ [ dupd * ] when [ sq ] dip ] reduce nip ; inline
M: integer ^n
[ factor-2s ] dip [ (^n) ] keep rot * shift ;
M: ratio ^n
[ >fraction ] dip [ ^n ] curry bi@ / ;
M: float ^n (^n) ;
M: complex ^n (^n) ;
: integer^ ( x y -- z )
dup 0 > [ ^n ] [ neg ^n recip ] if ; inline
PRIVATE>
: >rect ( z -- x y )
[ real-part ] [ imaginary-part ] bi ; inline
: >float-rect ( z -- x y )
>rect [ >float ] bi@ ; inline
: >polar ( z -- abs arg )
>float-rect [ [ sq ] bi@ + fsqrt ] [ swap fatan2 ] 2bi ; inline
: cis ( arg -- z ) dup fcos swap fsin rect> ; inline
: polar> ( abs arg -- z ) cis * ; inline
<PRIVATE
: ^mag ( w abs arg -- magnitude )
[ >float-rect swap ] [ swap fpow ] [ rot * fexp /f ] tri* ; inline
: ^theta ( w abs arg -- theta )
[ >float-rect ] [ flog * swap ] [ * + ] tri* ; inline
: ^complex ( x y -- z )
swap >polar [ ^mag ] [ ^theta ] 3bi polar> ; inline
: real^? ( x y -- ? )
2dup [ real? ] both? [ drop 0 >= ] [ 2drop f ] if ; inline
: 0^ ( x -- z )
[ 0/0. ] [ 0 < 1/0. 0 ? ] if-zero ; inline
: (^mod) ( n x y -- z )
make-bits 1 [
[ dupd * pick mod ] when [ sq over mod ] dip
] reduce 2nip ; inline
: (gcd) ( b a x y -- a d )
over zero? [
2nip
] [
swap [ /mod [ over * swapd - ] dip ] keep (gcd)
] if ;
PRIVATE>
: ^ ( x y -- z )
{
{ [ over 0 = ] [ nip 0^ ] }
{ [ dup integer? ] [ integer^ ] }
{ [ 2dup real^? ] [ fpow ] }
[ ^complex ]
} cond ; inline
: gcd ( x y -- a d )
[ 0 1 ] 2dip (gcd) dup 0 < [ neg ] when ; foldable
: lcm ( a b -- c )
[ * ] 2keep gcd nip /i ; foldable
: divisor? ( m n -- ? )
mod 0 = ;
ERROR: non-trivial-divisor n ;
: mod-inv ( x n -- y )
[ nip ] [ gcd 1 = ] 2bi
[ dup 0 < [ + ] [ nip ] if ]
[ non-trivial-divisor ] if ; foldable
: ^mod ( x y n -- z )
over 0 < [
[ [ neg ] dip ^mod ] keep mod-inv
] [
-rot (^mod)
] if ; foldable
GENERIC: absq ( x -- y ) foldable
M: real absq sq ;
: ~abs ( x y epsilon -- ? )
[ - abs ] dip < ;
: ~rel ( x y epsilon -- ? )
[ [ - abs ] 2keep [ abs ] bi@ + ] dip * < ;
: ~ ( x y epsilon -- ? )
{
{ [ 2over [ fp-nan? ] either? ] [ 3drop f ] }
{ [ dup zero? ] [ drop number= ] }
{ [ dup 0 < ] [ ~rel ] }
[ ~abs ]
} cond ;
: conjugate ( z -- z* ) >rect neg rect> ; inline
: arg ( z -- arg ) >float-rect swap fatan2 ; inline
: [-1,1]? ( x -- ? )
dup complex? [ drop f ] [ abs 1 <= ] if ; inline
: >=1? ( x -- ? )
dup complex? [ drop f ] [ 1 >= ] if ; inline
GENERIC: exp ( x -- y )
M: real exp fexp ;
M: complex exp >rect swap fexp swap polar> ;
GENERIC: log ( x -- y )
M: real log dup 0.0 >= [ flog ] [ 0.0 rect> log ] if ;
M: complex log >polar swap flog swap rect> ;
: 10^ ( x -- y ) 10 swap ^ ; inline
: log10 ( x -- y ) log 10 log / ; inline
GENERIC: cos ( x -- y ) foldable
M: complex cos
>float-rect
[ [ fcos ] [ fcosh ] bi* * ]
[ [ fsin neg ] [ fsinh ] bi* * ] 2bi rect> ;
M: real cos fcos ;
: sec ( x -- y ) cos recip ; inline
GENERIC: cosh ( x -- y ) foldable
M: complex cosh
>float-rect
[ [ fcosh ] [ fcos ] bi* * ]
[ [ fsinh ] [ fsin ] bi* * ] 2bi rect> ;
M: real cosh fcosh ;
: sech ( x -- y ) cosh recip ; inline
GENERIC: sin ( x -- y ) foldable
M: complex sin
>float-rect
[ [ fsin ] [ fcosh ] bi* * ]
[ [ fcos ] [ fsinh ] bi* * ] 2bi rect> ;
M: real sin fsin ;
: cosec ( x -- y ) sin recip ; inline
GENERIC: sinh ( x -- y ) foldable
M: complex sinh
>float-rect
[ [ fsinh ] [ fcos ] bi* * ]
[ [ fcosh ] [ fsin ] bi* * ] 2bi rect> ;
M: real sinh fsinh ;
: cosech ( x -- y ) sinh recip ; inline
GENERIC: tan ( x -- y ) foldable
M: complex tan [ sin ] [ cos ] bi / ;
M: real tan ftan ;
GENERIC: tanh ( x -- y ) foldable
M: complex tanh [ sinh ] [ cosh ] bi / ;
M: real tanh ftanh ;
: cot ( x -- y ) tan recip ; inline
: coth ( x -- y ) tanh recip ; inline
: acosh ( x -- y )
dup sq 1 - sqrt + log ; inline
: asech ( x -- y ) recip acosh ; inline
: asinh ( x -- y )
dup sq 1 + sqrt + log ; inline
: acosech ( x -- y ) recip asinh ; inline
: atanh ( x -- y )
[ 1 + ] [ 1 - neg ] bi / log 2 / ; inline
: acoth ( x -- y ) recip atanh ; inline
: i* ( x -- y ) >rect neg swap rect> ;
: -i* ( x -- y ) >rect swap neg rect> ;
: asin ( x -- y )
dup [-1,1]? [ fasin ] [ i* asinh -i* ] if ; inline
: acos ( x -- y )
dup [-1,1]? [ facos ] [ asin pi 2 / swap - ] if ;
inline
GENERIC: atan ( x -- y ) foldable
M: complex atan i* atanh i* ;
M: real atan fatan ;
: asec ( x -- y ) recip acos ; inline
: acosec ( x -- y ) recip asin ; inline
: acot ( x -- y ) recip atan ; inline
: truncate ( x -- y ) dup 1 mod - ; inline
: round ( x -- y ) dup sgn 2 / + truncate ; inline
: floor ( x -- y )
dup 1 mod
[ ] [ dup 0 < [ - 1 - ] [ - ] if ] if-zero ; foldable
: ceiling ( x -- y ) neg floor neg ; foldable
: floor-to ( x step -- y )
[ [ / floor ] [ * ] bi ] unless-zero ;
: lerp ( a b t -- a_t ) [ over - ] dip * + ; inline