factor/vm/data_heap.cpp

385 lines
9.2 KiB
C++

#include "master.hpp"
factor::zone nursery;
namespace factor
{
/* Set by the -securegc command line argument */
bool secure_gc;
/* new objects are allocated here */
VM_C_API zone nursery;
/* GC is off during heap walking */
bool gc_off;
data_heap *data;
cell init_zone(zone *z, cell size, cell start)
{
z->size = size;
z->start = z->here = start;
z->end = start + size;
return z->end;
}
void init_card_decks()
{
cell start = align(data->seg->start,deck_size);
allot_markers_offset = (cell)data->allot_markers - (start >> card_bits);
cards_offset = (cell)data->cards - (start >> card_bits);
decks_offset = (cell)data->decks - (start >> deck_bits);
}
data_heap *alloc_data_heap(cell gens,
cell young_size,
cell aging_size,
cell tenured_size)
{
young_size = align(young_size,deck_size);
aging_size = align(aging_size,deck_size);
tenured_size = align(tenured_size,deck_size);
data_heap *data = (data_heap *)safe_malloc(sizeof(data_heap));
data->young_size = young_size;
data->aging_size = aging_size;
data->tenured_size = tenured_size;
data->gen_count = gens;
cell total_size;
if(data->gen_count == 2)
total_size = young_size + 2 * tenured_size;
else if(data->gen_count == 3)
total_size = young_size + 2 * aging_size + 2 * tenured_size;
else
{
fatal_error("Invalid number of generations",data->gen_count);
return NULL; /* can't happen */
}
total_size += deck_size;
data->seg = alloc_segment(total_size);
data->generations = (zone *)safe_malloc(sizeof(zone) * data->gen_count);
data->semispaces = (zone *)safe_malloc(sizeof(zone) * data->gen_count);
cell cards_size = total_size >> card_bits;
data->allot_markers = (cell *)safe_malloc(cards_size);
data->allot_markers_end = data->allot_markers + cards_size;
data->cards = (cell *)safe_malloc(cards_size);
data->cards_end = data->cards + cards_size;
cell decks_size = total_size >> deck_bits;
data->decks = (cell *)safe_malloc(decks_size);
data->decks_end = data->decks + decks_size;
cell alloter = align(data->seg->start,deck_size);
alloter = init_zone(&data->generations[data->tenured()],tenured_size,alloter);
alloter = init_zone(&data->semispaces[data->tenured()],tenured_size,alloter);
if(data->gen_count == 3)
{
alloter = init_zone(&data->generations[data->aging()],aging_size,alloter);
alloter = init_zone(&data->semispaces[data->aging()],aging_size,alloter);
}
if(data->gen_count >= 2)
{
alloter = init_zone(&data->generations[data->nursery()],young_size,alloter);
alloter = init_zone(&data->semispaces[data->nursery()],0,alloter);
}
if(data->seg->end - alloter > deck_size)
critical_error("Bug in alloc_data_heap",alloter);
return data;
}
data_heap *grow_data_heap(data_heap *data, cell requested_bytes)
{
cell new_tenured_size = (data->tenured_size * 2) + requested_bytes;
return alloc_data_heap(data->gen_count,
data->young_size,
data->aging_size,
new_tenured_size);
}
void dealloc_data_heap(data_heap *data)
{
dealloc_segment(data->seg);
free(data->generations);
free(data->semispaces);
free(data->allot_markers);
free(data->cards);
free(data->decks);
free(data);
}
void clear_cards(cell from, cell to)
{
/* NOTE: reverse order due to heap layout. */
card *first_card = addr_to_card(data->generations[to].start);
card *last_card = addr_to_card(data->generations[from].end);
memset(first_card,0,last_card - first_card);
}
void clear_decks(cell from, cell to)
{
/* NOTE: reverse order due to heap layout. */
card_deck *first_deck = addr_to_deck(data->generations[to].start);
card_deck *last_deck = addr_to_deck(data->generations[from].end);
memset(first_deck,0,last_deck - first_deck);
}
void clear_allot_markers(cell from, cell to)
{
/* NOTE: reverse order due to heap layout. */
card *first_card = addr_to_allot_marker((object *)data->generations[to].start);
card *last_card = addr_to_allot_marker((object *)data->generations[from].end);
memset(first_card,invalid_allot_marker,last_card - first_card);
}
void reset_generation(cell i)
{
zone *z = (i == data->nursery() ? &nursery : &data->generations[i]);
z->here = z->start;
if(secure_gc)
memset((void*)z->start,69,z->size);
}
/* After garbage collection, any generations which are now empty need to have
their allocation pointers and cards reset. */
void reset_generations(cell from, cell to)
{
cell i;
for(i = from; i <= to; i++)
reset_generation(i);
clear_cards(from,to);
clear_decks(from,to);
clear_allot_markers(from,to);
}
void set_data_heap(data_heap *data_)
{
data = data_;
nursery = data->generations[data->nursery()];
init_card_decks();
clear_cards(data->nursery(),data->tenured());
clear_decks(data->nursery(),data->tenured());
clear_allot_markers(data->nursery(),data->tenured());
}
void init_data_heap(cell gens,
cell young_size,
cell aging_size,
cell tenured_size,
bool secure_gc_)
{
set_data_heap(alloc_data_heap(gens,young_size,aging_size,tenured_size));
secure_gc = secure_gc_;
init_data_gc();
}
/* Size of the object pointed to by a tagged pointer */
cell object_size(cell tagged)
{
if(immediate_p(tagged))
return 0;
else
return untagged_object_size(untag<object>(tagged));
}
/* Size of the object pointed to by an untagged pointer */
cell untagged_object_size(object *pointer)
{
return align8(unaligned_object_size(pointer));
}
/* Size of the data area of an object pointed to by an untagged pointer */
cell unaligned_object_size(object *pointer)
{
switch(pointer->h.hi_tag())
{
case ARRAY_TYPE:
return array_size((array*)pointer);
case BIGNUM_TYPE:
return array_size((bignum*)pointer);
case BYTE_ARRAY_TYPE:
return array_size((byte_array*)pointer);
case STRING_TYPE:
return string_size(string_capacity((string*)pointer));
case TUPLE_TYPE:
return tuple_size(untag<tuple_layout>(((tuple *)pointer)->layout));
case QUOTATION_TYPE:
return sizeof(quotation);
case WORD_TYPE:
return sizeof(word);
case FLOAT_TYPE:
return sizeof(boxed_float);
case DLL_TYPE:
return sizeof(dll);
case ALIEN_TYPE:
return sizeof(alien);
case WRAPPER_TYPE:
return sizeof(wrapper);
case CALLSTACK_TYPE:
return callstack_size(untag_fixnum(((callstack *)pointer)->length));
default:
critical_error("Invalid header",(cell)pointer);
return 0; /* can't happen */
}
}
PRIMITIVE(size)
{
box_unsigned_cell(object_size(dpop()));
}
/* The number of cells from the start of the object which should be scanned by
the GC. Some types have a binary payload at the end (string, word, DLL) which
we ignore. */
cell binary_payload_start(object *pointer)
{
switch(pointer->h.hi_tag())
{
/* these objects do not refer to other objects at all */
case FLOAT_TYPE:
case BYTE_ARRAY_TYPE:
case BIGNUM_TYPE:
case CALLSTACK_TYPE:
return 0;
/* these objects have some binary data at the end */
case WORD_TYPE:
return sizeof(word) - sizeof(cell) * 3;
case ALIEN_TYPE:
return sizeof(cell) * 3;
case DLL_TYPE:
return sizeof(cell) * 2;
case QUOTATION_TYPE:
return sizeof(quotation) - sizeof(cell) * 2;
case STRING_TYPE:
return sizeof(string);
/* everything else consists entirely of pointers */
case ARRAY_TYPE:
return array_size<array>(array_capacity((array*)pointer));
case TUPLE_TYPE:
return tuple_size(untag<tuple_layout>(((tuple *)pointer)->layout));
case WRAPPER_TYPE:
return sizeof(wrapper);
default:
critical_error("Invalid header",(cell)pointer);
return 0; /* can't happen */
}
}
/* Push memory usage statistics in data heap */
PRIMITIVE(data_room)
{
dpush(tag_fixnum((data->cards_end - data->cards) >> 10));
dpush(tag_fixnum((data->decks_end - data->decks) >> 10));
growable_array a;
cell gen;
for(gen = 0; gen < data->gen_count; gen++)
{
zone *z = (gen == data->nursery() ? &nursery : &data->generations[gen]);
a.add(tag_fixnum((z->end - z->here) >> 10));
a.add(tag_fixnum((z->size) >> 10));
}
a.trim();
dpush(a.elements.value());
}
/* A heap walk allows useful things to be done, like finding all
references to an object for debugging purposes. */
cell heap_scan_ptr;
/* Disables GC and activates next-object ( -- obj ) primitive */
void begin_scan()
{
heap_scan_ptr = data->generations[data->tenured()].start;
gc_off = true;
}
void end_scan()
{
gc_off = false;
}
PRIMITIVE(begin_scan)
{
begin_scan();
}
cell next_object()
{
if(!gc_off)
general_error(ERROR_HEAP_SCAN,F,F,NULL);
if(heap_scan_ptr >= data->generations[data->tenured()].here)
return F;
object *obj = (object *)heap_scan_ptr;
heap_scan_ptr += untagged_object_size(obj);
return tag_dynamic(obj);
}
/* Push object at heap scan cursor and advance; pushes f when done */
PRIMITIVE(next_object)
{
dpush(next_object());
}
/* Re-enables GC */
PRIMITIVE(end_scan)
{
gc_off = false;
}
template<typename T> void each_object(T &functor)
{
begin_scan();
cell obj;
while((obj = next_object()) != F)
functor(tagged<object>(obj));
end_scan();
}
namespace
{
struct word_counter {
cell count;
word_counter() : count(0) {}
void operator()(tagged<object> obj) { if(obj.type_p(WORD_TYPE)) count++; }
};
struct word_accumulator {
growable_array words;
word_accumulator(int count) : words(count) {}
void operator()(tagged<object> obj) { if(obj.type_p(WORD_TYPE)) words.add(obj.value()); }
};
}
cell find_all_words()
{
word_counter counter;
each_object(counter);
word_accumulator accum(counter.count);
each_object(accum);
accum.words.trim();
return accum.words.elements.value();
}
}