322 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
namespace factor {
 | 
						|
 | 
						|
static const cell free_list_count = 32;
 | 
						|
static const cell allocation_page_size = 1024;
 | 
						|
 | 
						|
struct free_heap_block {
 | 
						|
  cell header;
 | 
						|
 | 
						|
  bool free_p() const { return (header & 1) == 1; }
 | 
						|
 | 
						|
  cell size() const {
 | 
						|
    cell size = header & ~7;
 | 
						|
    FACTOR_ASSERT(size > 0);
 | 
						|
    return size;
 | 
						|
  }
 | 
						|
 | 
						|
  void make_free(cell size) {
 | 
						|
    FACTOR_ASSERT(size > 0);
 | 
						|
    header = size | 1;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct block_size_compare {
 | 
						|
  bool operator()(free_heap_block* a, free_heap_block* b) const {
 | 
						|
    return a->size() < b->size();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct allocator_room {
 | 
						|
  cell size;
 | 
						|
  cell occupied_space;
 | 
						|
  cell total_free;
 | 
						|
  cell contiguous_free;
 | 
						|
  cell free_block_count;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Block> struct free_list_allocator {
 | 
						|
  // Region of memory managed by this free list allocator.
 | 
						|
  cell start;
 | 
						|
  cell end;
 | 
						|
  cell size;
 | 
						|
 | 
						|
  // Stores the free blocks
 | 
						|
  std::vector<free_heap_block*> small_blocks[free_list_count];
 | 
						|
  std::multiset<free_heap_block*, block_size_compare> large_blocks;
 | 
						|
  cell free_block_count;
 | 
						|
  cell free_space;
 | 
						|
 | 
						|
  mark_bits state;
 | 
						|
 | 
						|
  // Initializing & freeing
 | 
						|
  free_list_allocator(cell size, cell start);
 | 
						|
  void initial_free_list(cell occupied);
 | 
						|
  void clear_free_list();
 | 
						|
  void add_to_free_list(free_heap_block* block);
 | 
						|
  void free(Block* block);
 | 
						|
 | 
						|
  // Allocating
 | 
						|
  free_heap_block* find_free_block(cell size);
 | 
						|
  free_heap_block* split_free_block(free_heap_block* block, cell size);
 | 
						|
  Block* allot(cell size);
 | 
						|
 | 
						|
  // Data
 | 
						|
  bool contains_p(Block* block);
 | 
						|
  bool can_allot_p(cell size);
 | 
						|
  cell occupied_space();
 | 
						|
  cell largest_free_block();
 | 
						|
  allocator_room as_allocator_room();
 | 
						|
 | 
						|
  // Iteration
 | 
						|
  void sweep();
 | 
						|
  template <typename Iterator> void sweep(Iterator& iter);
 | 
						|
  template <typename Iterator, typename Fixup>
 | 
						|
  void compact(Iterator& iter, Fixup fixup, const Block** finger);
 | 
						|
  template <typename Iterator, typename Fixup>
 | 
						|
  void iterate(Iterator& iter, Fixup fixup);
 | 
						|
};
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
void free_list_allocator<Block>::clear_free_list() {
 | 
						|
  for (cell i = 0; i < free_list_count; i++)
 | 
						|
    small_blocks[i].clear();
 | 
						|
  large_blocks.clear();
 | 
						|
  free_block_count = 0;
 | 
						|
  free_space = 0;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
void free_list_allocator<Block>::add_to_free_list(free_heap_block* block) {
 | 
						|
  cell size = block->size();
 | 
						|
 | 
						|
  free_block_count++;
 | 
						|
  free_space += size;
 | 
						|
 | 
						|
  if (size < free_list_count * data_alignment)
 | 
						|
    small_blocks[size / data_alignment].push_back(block);
 | 
						|
  else
 | 
						|
    large_blocks.insert(block);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
void free_list_allocator<Block>::initial_free_list(cell occupied) {
 | 
						|
  clear_free_list();
 | 
						|
  if (occupied != end - start) {
 | 
						|
    free_heap_block* last_block = (free_heap_block*)(start + occupied);
 | 
						|
    last_block->make_free(end - (cell)last_block);
 | 
						|
    add_to_free_list(last_block);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
free_list_allocator<Block>::free_list_allocator(cell size, cell start)
 | 
						|
    : start(start),
 | 
						|
      end(start + size),
 | 
						|
      size(size),
 | 
						|
      state(mark_bits(size, start)) {
 | 
						|
  initial_free_list(0);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
bool free_list_allocator<Block>::contains_p(Block* block) {
 | 
						|
  return ((cell)block - start) < size;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
bool free_list_allocator<Block>::can_allot_p(cell size) {
 | 
						|
  return largest_free_block() >= std::max(size, allocation_page_size);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
free_heap_block* free_list_allocator<Block>::split_free_block(
 | 
						|
    free_heap_block* block,
 | 
						|
    cell size) {
 | 
						|
  if (block->size() != size) {
 | 
						|
    // split the block in two
 | 
						|
    free_heap_block* split = (free_heap_block*)((cell)block + size);
 | 
						|
    split->make_free(block->size() - size);
 | 
						|
    block->make_free(size);
 | 
						|
    add_to_free_list(split);
 | 
						|
  }
 | 
						|
 | 
						|
  return block;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
free_heap_block* free_list_allocator<Block>::find_free_block(cell size) {
 | 
						|
  // Check small free lists
 | 
						|
  cell bucket = size / data_alignment;
 | 
						|
  if (bucket < free_list_count) {
 | 
						|
    std::vector<free_heap_block*>& blocks = small_blocks[bucket];
 | 
						|
    if (blocks.size() == 0) {
 | 
						|
      // Round up to a multiple of 'size'
 | 
						|
      cell large_block_size = ((allocation_page_size + size - 1) / size) * size;
 | 
						|
 | 
						|
      // Allocate a block this big
 | 
						|
      free_heap_block* large_block = find_free_block(large_block_size);
 | 
						|
      if (!large_block)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
      large_block = split_free_block(large_block, large_block_size);
 | 
						|
 | 
						|
      // Split it up into pieces and add each piece back to the free list
 | 
						|
      for (cell offset = 0; offset < large_block_size; offset += size) {
 | 
						|
        free_heap_block* small_block = large_block;
 | 
						|
        large_block = (free_heap_block*)((cell)large_block + size);
 | 
						|
        small_block->make_free(size);
 | 
						|
        add_to_free_list(small_block);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    free_heap_block* block = blocks.back();
 | 
						|
    blocks.pop_back();
 | 
						|
 | 
						|
    free_block_count--;
 | 
						|
    free_space -= block->size();
 | 
						|
 | 
						|
    return block;
 | 
						|
  } else {
 | 
						|
    // Check large free list
 | 
						|
    free_heap_block key;
 | 
						|
    key.make_free(size);
 | 
						|
    auto iter = large_blocks.lower_bound(&key);
 | 
						|
    auto end = large_blocks.end();
 | 
						|
 | 
						|
    if (iter != end) {
 | 
						|
      free_heap_block* block = *iter;
 | 
						|
      large_blocks.erase(iter);
 | 
						|
 | 
						|
      free_block_count--;
 | 
						|
      free_space -= block->size();
 | 
						|
 | 
						|
      return block;
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
Block* free_list_allocator<Block>::allot(cell size) {
 | 
						|
  size = align(size, data_alignment);
 | 
						|
 | 
						|
  free_heap_block* block = find_free_block(size);
 | 
						|
  if (block) {
 | 
						|
    block = split_free_block(block, size);
 | 
						|
    return (Block*)block;
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
void free_list_allocator<Block>::free(Block* block) {
 | 
						|
  free_heap_block* free_block = (free_heap_block*)block;
 | 
						|
  free_block->make_free(block->size());
 | 
						|
  add_to_free_list(free_block);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
cell free_list_allocator<Block>::occupied_space() {
 | 
						|
  return size - free_space;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
cell free_list_allocator<Block>::largest_free_block() {
 | 
						|
  if (large_blocks.size()) {
 | 
						|
    auto last = large_blocks.rbegin();
 | 
						|
    return (*last)->size();
 | 
						|
  } else {
 | 
						|
    for (int i = free_list_count - 1; i >= 0; i--) {
 | 
						|
      if (small_blocks[i].size())
 | 
						|
        return small_blocks[i].back()->size();
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator>
 | 
						|
void free_list_allocator<Block>::sweep(Iterator& iter) {
 | 
						|
  clear_free_list();
 | 
						|
 | 
						|
  cell start = this->start;
 | 
						|
  cell end = this->end;
 | 
						|
 | 
						|
  while (start != end) {
 | 
						|
    // find next unmarked block
 | 
						|
    start = state.next_unmarked_block_after(start);
 | 
						|
 | 
						|
    if (start != end) {
 | 
						|
      // find size
 | 
						|
      cell size = state.unmarked_block_size(start);
 | 
						|
      FACTOR_ASSERT(size > 0);
 | 
						|
 | 
						|
      free_heap_block* free_block = (free_heap_block*)start;
 | 
						|
      free_block->make_free(size);
 | 
						|
      add_to_free_list(free_block);
 | 
						|
      iter((Block*)start, size);
 | 
						|
 | 
						|
      start = start + size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> void free_list_allocator<Block>::sweep() {
 | 
						|
  auto null_sweep = [](Block* free_block, cell size) { (void)free_block; (void)size; };
 | 
						|
  sweep(null_sweep);
 | 
						|
}
 | 
						|
 | 
						|
// The forwarding map must be computed first by calling
 | 
						|
// state.compute_forwarding().
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator, typename Fixup>
 | 
						|
void free_list_allocator<Block>::compact(Iterator& iter, Fixup fixup,
 | 
						|
                                         const Block** finger) {
 | 
						|
  cell dest_addr = start;
 | 
						|
  auto compact_block_func = [&](Block* block, cell size) {
 | 
						|
    cell block_addr = (cell)block;
 | 
						|
    if (!state.marked_p(block_addr))
 | 
						|
      return;
 | 
						|
    *finger = (Block*)(block_addr + size);
 | 
						|
    if (dest_addr != (cell)block) {
 | 
						|
      memmove((Block*)dest_addr, block, size);
 | 
						|
    }
 | 
						|
    iter(block, (Block*)dest_addr, size);
 | 
						|
    dest_addr += size;
 | 
						|
  };
 | 
						|
  iterate(compact_block_func, fixup);
 | 
						|
 | 
						|
  // Now update the free list; there will be a single free block at
 | 
						|
  // the end
 | 
						|
  initial_free_list(dest_addr - start);
 | 
						|
}
 | 
						|
 | 
						|
// During compaction we have to be careful and measure object sizes
 | 
						|
// differently
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator, typename Fixup>
 | 
						|
void free_list_allocator<Block>::iterate(Iterator& iter, Fixup fixup) {
 | 
						|
  cell scan = this->start;
 | 
						|
  while (scan != this->end) {
 | 
						|
    Block* block = (Block*)scan;
 | 
						|
    cell size = fixup.size(block);
 | 
						|
    if (!block->free_p())
 | 
						|
      iter(block, size);
 | 
						|
    scan += size;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
allocator_room free_list_allocator<Block>::as_allocator_room() {
 | 
						|
  allocator_room room;
 | 
						|
  room.size = size;
 | 
						|
  room.occupied_space = occupied_space();
 | 
						|
  room.total_free = free_space;
 | 
						|
  room.contiguous_free = largest_free_block();
 | 
						|
  room.free_block_count = free_block_count;
 | 
						|
  return room;
 | 
						|
}
 | 
						|
 | 
						|
}
 |