factor/basis/math/vectors/simd/simd.factor

291 lines
11 KiB
Factor

USING: accessors alien.c-types arrays byte-arrays classes combinators
cpu.architecture effects fry functors generalizations generic
generic.parser kernel lexer literals macros math math.functions
math.vectors math.vectors.private math.vectors.simd.intrinsics namespaces parser
prettyprint.custom quotations sequences sequences.private vocabs
vocabs.loader words ;
QUALIFIED-WITH: alien.c-types c
IN: math.vectors.simd
ERROR: bad-simd-length got expected ;
<<
<PRIVATE
! Primitive SIMD constructors
GENERIC: new-underlying ( underlying seq -- seq' )
: make-underlying ( seq quot -- seq' )
dip new-underlying ; inline
: change-underlying ( seq quot -- seq' )
'[ underlying>> @ ] keep new-underlying ; inline
PRIVATE>
>>
<PRIVATE
! Helper for boolean vector literals
: vector-true-value ( class -- value )
{ c:float c:double } member? [ -1 bits>double ] [ -1 ] if ; foldable
: vector-false-value ( type -- value )
{ c:float c:double } member? [ 0.0 ] [ 0 ] if ; foldable
: boolean>element ( bool/elt type -- elt )
swap {
{ t [ vector-true-value ] }
{ f [ vector-false-value ] }
[ nip ]
} case ; inline
PRIVATE>
! SIMD base type
TUPLE: simd-128
{ underlying byte-array read-only initial: $[ 16 <byte-array> ] } ;
GENERIC: simd-element-type ( obj -- c-type )
GENERIC: simd-rep ( simd -- rep )
M: object simd-element-type drop f ;
M: object simd-rep drop f ;
<<
<PRIVATE
DEFER: simd-construct-op
! Unboxers for SIMD operations
: if-both-vectors ( a b rep t f -- )
[ 2over [ simd-128? ] both? ] 2dip if ; inline
: if-both-vectors-match ( a b rep t f -- )
[ 3dup [ drop [ simd-128? ] both? ] [ '[ simd-rep _ eq? ] both? ] 3bi and ]
2dip if ; inline
: simd-unbox ( a -- a (a) )
[ ] [ underlying>> ] bi ; inline
: v->v-op ( a rep quot: ( (a) rep -- (c) ) fallback-quot -- c )
drop [ simd-unbox ] 2dip 2curry make-underlying ; inline
: vn->v-op ( a n rep quot: ( (a) n rep -- (c) ) fallback-quot -- c )
drop [ simd-unbox ] 3dip 3curry make-underlying ; inline
: vn->n-op ( a n rep quot: ( (a) n rep -- n ) fallback-quot -- n )
drop [ underlying>> ] 3dip call ; inline
: v->n-op ( a rep quot: ( (a) rep -- n ) fallback-quot -- n )
drop [ underlying>> ] 2dip call ; inline
: (vv->v-op) ( a b rep quot: ( (a) (b) rep -- (c) ) -- c )
[ [ simd-unbox ] [ underlying>> ] bi* ] 2dip 3curry make-underlying ; inline
: (vv->n-op) ( a b rep quot: ( (a) (b) rep -- n ) -- n )
[ [ underlying>> ] bi@ ] 2dip 3curry call ; inline
: vv->v-op ( a b rep quot: ( (a) (b) rep -- (c) ) fallback-quot -- c )
[ '[ _ (vv->v-op) ] ] [ '[ drop @ ] ] bi* if-both-vectors-match ; inline
: vv'->v-op ( a b rep quot: ( (a) (b) rep -- (c) ) fallback-quot -- c )
[ '[ _ (vv->v-op) ] ] [ '[ drop @ ] ] bi* if-both-vectors ; inline
: vv->n-op ( a b rep quot: ( (a) (b) rep -- n ) fallback-quot -- n )
[ '[ _ (vv->n-op) ] ] [ '[ drop @ ] ] bi* if-both-vectors-match ; inline
PRIVATE>
>>
<<
<PRIVATE
! SIMD concrete type functor
FUNCTOR: define-simd-128 ( T -- )
A DEFINES-CLASS ${T}
A-rep IS ${T}-rep
>A DEFINES >${T}
A-boa DEFINES ${T}-boa
A-with DEFINES ${T}-with
A-cast DEFINES ${T}-cast
A{ DEFINES ${T}{
ELT [ A-rep rep-component-type ]
N [ A-rep rep-length ]
COERCER [ ELT c-type-class "coercer" word-prop [ ] or ]
SET-NTH [ ELT dup c:c-setter c:array-accessor ]
BOA-EFFECT [ N "n" <repetition> >array { "v" } <effect> ]
WHERE
TUPLE: A < simd-128 ;
M: A new-underlying drop \ A boa ; inline
M: A simd-rep drop A-rep ; inline
M: A simd-element-type drop ELT ; inline
M: A set-nth-unsafe
[ ELT boolean>element ] 2dip
underlying>> SET-NTH call ; inline
: >A ( seq -- simd ) \ A new clone-like ; inline
M: A like drop dup \ A instance? [ >A ] unless ; inline
: A-with ( n -- v ) COERCER call \ A-rep (simd-with) \ A boa ; inline
: A-cast ( v -- v' ) underlying>> \ A boa ; inline
! SIMD vectors as sequences
M: A hashcode* underlying>> hashcode* ; inline
M: A clone [ clone ] change-underlying ; inline
M: A length drop N ; inline
M: A nth-unsafe
swap \ A-rep [ (simd-select) ] [ call-next-method ] vn->n-op ; inline
M: A c:byte-length drop 16 ; inline
M: A new-sequence
2dup length =
[ nip [ 16 (byte-array) ] make-underlying ]
[ length bad-simd-length ] if ; inline
M: A equal?
\ A-rep [ drop v= vall? ] [ 3drop f ] if-both-vectors-match ; inline
! SIMD primitive operations
M: A v+ \ A-rep [ (simd-v+) ] [ call-next-method ] vv->v-op ; inline
M: A v- \ A-rep [ (simd-v-) ] [ call-next-method ] vv->v-op ; inline
M: A vneg \ A-rep [ (simd-vneg) ] [ call-next-method ] v->v-op ; inline
M: A v+- \ A-rep [ (simd-v+-) ] [ call-next-method ] vv->v-op ; inline
M: A vs+ \ A-rep [ (simd-vs+) ] [ call-next-method ] vv->v-op ; inline
M: A vs- \ A-rep [ (simd-vs-) ] [ call-next-method ] vv->v-op ; inline
M: A vs* \ A-rep [ (simd-vs*) ] [ call-next-method ] vv->v-op ; inline
M: A v* \ A-rep [ (simd-v*) ] [ call-next-method ] vv->v-op ; inline
M: A v*high \ A-rep [ (simd-v*high) ] [ call-next-method ] vv->v-op ; inline
M: A v/ \ A-rep [ (simd-v/) ] [ call-next-method ] vv->v-op ; inline
M: A vavg \ A-rep [ (simd-vavg) ] [ call-next-method ] vv->v-op ; inline
M: A vmin \ A-rep [ (simd-vmin) ] [ call-next-method ] vv->v-op ; inline
M: A vmax \ A-rep [ (simd-vmax) ] [ call-next-method ] vv->v-op ; inline
M: A v. \ A-rep [ (simd-v.) ] [ call-next-method ] vv->n-op ; inline
M: A vsad \ A-rep [ (simd-vsad) ] [ call-next-method ] vv->n-op ; inline
M: A vsqrt \ A-rep [ (simd-vsqrt) ] [ call-next-method ] v->v-op ; inline
M: A sum \ A-rep [ (simd-sum) ] [ call-next-method ] v->n-op ; inline
M: A vabs \ A-rep [ (simd-vabs) ] [ call-next-method ] v->v-op ; inline
M: A vbitand \ A-rep [ (simd-vbitand) ] [ call-next-method ] vv->v-op ; inline
M: A vbitandn \ A-rep [ (simd-vbitandn) ] [ call-next-method ] vv->v-op ; inline
M: A vbitor \ A-rep [ (simd-vbitor) ] [ call-next-method ] vv->v-op ; inline
M: A vbitxor \ A-rep [ (simd-vbitxor) ] [ call-next-method ] vv->v-op ; inline
M: A vbitnot \ A-rep [ (simd-vbitnot) ] [ call-next-method ] v->v-op ; inline
M: A vand \ A-rep [ (simd-vand) ] [ call-next-method ] vv->v-op ; inline
M: A vandn \ A-rep [ (simd-vandn) ] [ call-next-method ] vv->v-op ; inline
M: A vor \ A-rep [ (simd-vor) ] [ call-next-method ] vv->v-op ; inline
M: A vxor \ A-rep [ (simd-vxor) ] [ call-next-method ] vv->v-op ; inline
M: A vnot \ A-rep [ (simd-vnot) ] [ call-next-method ] v->v-op ; inline
M: A vlshift \ A-rep [ (simd-vlshift) ] [ call-next-method ] vn->v-op ; inline
M: A vrshift \ A-rep [ (simd-vrshift) ] [ call-next-method ] vn->v-op ; inline
M: A hlshift \ A-rep [ (simd-hlshift) ] [ call-next-method ] vn->v-op ; inline
M: A hrshift \ A-rep [ (simd-hrshift) ] [ call-next-method ] vn->v-op ; inline
M: A vshuffle-elements \ A-rep [ (simd-vshuffle-elements) ] [ call-next-method ] vn->v-op ; inline
M: A vshuffle-bytes \ A-rep [ (simd-vshuffle-bytes) ] [ call-next-method ] vv'->v-op ; inline
M: A (vmerge-head) \ A-rep [ (simd-vmerge-head) ] [ call-next-method ] vv->v-op ; inline
M: A (vmerge-tail) \ A-rep [ (simd-vmerge-tail) ] [ call-next-method ] vv->v-op ; inline
M: A v<= \ A-rep [ (simd-v<=) ] [ call-next-method ] vv->v-op ; inline
M: A v< \ A-rep [ (simd-v<) ] [ call-next-method ] vv->v-op ; inline
M: A v= \ A-rep [ (simd-v=) ] [ call-next-method ] vv->v-op ; inline
M: A v> \ A-rep [ (simd-v>) ] [ call-next-method ] vv->v-op ; inline
M: A v>= \ A-rep [ (simd-v>=) ] [ call-next-method ] vv->v-op ; inline
M: A vunordered? \ A-rep [ (simd-vunordered?) ] [ call-next-method ] vv->v-op ; inline
M: A vany? \ A-rep [ (simd-vany?) ] [ call-next-method ] v->n-op ; inline
M: A vall? \ A-rep [ (simd-vall?) ] [ call-next-method ] v->n-op ; inline
M: A vnone? \ A-rep [ (simd-vnone?) ] [ call-next-method ] v->n-op ; inline
! SIMD high-level specializations
M: A vbroadcast swap nth A-with ; inline
M: A n+v [ A-with ] dip v+ ; inline
M: A n-v [ A-with ] dip v- ; inline
M: A n*v [ A-with ] dip v* ; inline
M: A n/v [ A-with ] dip v/ ; inline
M: A v+n A-with v+ ; inline
M: A v-n A-with v- ; inline
M: A v*n A-with v* ; inline
M: A v/n A-with v/ ; inline
M: A norm-sq dup v. assert-positive ; inline
M: A distance v- norm ; inline
M: A >pprint-sequence ;
M: A pprint* pprint-object ;
\ A-boa
[ COERCER N napply ] N {
{ 2 [ [ A-rep (simd-gather-2) A boa ] ] }
{ 4 [ [ A-rep (simd-gather-4) A boa ] ] }
[ \ A new '[ _ _ nsequence ] ]
} case compose
BOA-EFFECT define-inline
M: A pprint-delims drop \ A{ \ } ;
SYNTAX: A{ \ } [ >A ] parse-literal ;
INSTANCE: A sequence
c:<c-type>
byte-array >>class
A >>boxed-class
{ A-rep alien-vector A boa } >quotation >>getter
{ [ underlying>> ] 2dip A-rep set-alien-vector } >quotation >>setter
16 >>size
16 >>align
A-rep >>rep
\ A c:typedef
;FUNCTOR
SYNTAX: SIMD-128:
scan define-simd-128 ;
PRIVATE>
>>
! SIMD instances
SIMD-128: char-16
SIMD-128: uchar-16
SIMD-128: short-8
SIMD-128: ushort-8
SIMD-128: int-4
SIMD-128: uint-4
SIMD-128: longlong-2
SIMD-128: ulonglong-2
SIMD-128: float-4
SIMD-128: double-2
! misc
M: simd-128 vshuffle ( u perm -- v )
vshuffle-bytes ; inline
M: uchar-16 v*hs+
uchar-16-rep [ (simd-v*hs+) ] [ call-next-method ] vv->v-op ushort-8-cast ; inline
M: ushort-8 v*hs+
ushort-8-rep [ (simd-v*hs+) ] [ call-next-method ] vv->v-op uint-4-cast ; inline
M: uint-4 v*hs+
uint-4-rep [ (simd-v*hs+) ] [ call-next-method ] vv->v-op ulonglong-2-cast ; inline
M: char-16 v*hs+
char-16-rep [ (simd-v*hs+) ] [ call-next-method ] vv->v-op short-8-cast ; inline
M: short-8 v*hs+
short-8-rep [ (simd-v*hs+) ] [ call-next-method ] vv->v-op int-4-cast ; inline
M: int-4 v*hs+
int-4-rep [ (simd-v*hs+) ] [ call-next-method ] vv->v-op longlong-2-cast ; inline
"mirrors" vocab [
"math.vectors.simd.mirrors" require
] when