factor/vm/gc.cpp

260 lines
6.5 KiB
C++
Executable File

#include "master.hpp"
namespace factor
{
gc_state::gc_state(data_heap *data_, bool growing_data_heap_, cell collecting_gen_) :
data(data_),
growing_data_heap(growing_data_heap_),
collecting_gen(collecting_gen_),
collecting_aging_again(false),
start_time(current_micros()) { }
gc_state::~gc_state() { }
struct literal_and_word_reference_updater {
factor_vm *myvm;
literal_and_word_reference_updater(factor_vm *myvm_) : myvm(myvm_) {}
void operator()(heap_block *block)
{
code_block *compiled = (code_block *)block;
myvm->update_literal_references(compiled);
myvm->update_word_references(compiled);
}
};
void factor_vm::free_unmarked_code_blocks()
{
literal_and_word_reference_updater updater(this);
code->free_unmarked(updater);
code->points_to_nursery.clear();
code->points_to_aging.clear();
}
void factor_vm::update_dirty_code_blocks(std::set<code_block *> *remembered_set)
{
/* The youngest generation that any code block can now reference */
std::set<code_block *>::const_iterator iter = remembered_set->begin();
std::set<code_block *>::const_iterator end = remembered_set->end();
for(; iter != end; iter++) update_literal_references(*iter);
}
void factor_vm::record_gc_stats()
{
generation_statistics *s = &gc_stats.generations[current_gc->collecting_gen];
cell gc_elapsed = (current_micros() - current_gc->start_time);
s->collections++;
s->gc_time += gc_elapsed;
if(s->max_gc_time < gc_elapsed)
s->max_gc_time = gc_elapsed;
}
/* Collect gen and all younger generations.
If growing_data_heap_ is true, we must grow the data heap to such a size that
an allocation of requested_bytes won't fail */
void factor_vm::garbage_collection(cell collecting_gen_, bool growing_data_heap_, bool trace_contexts_p, cell requested_bytes)
{
assert(!gc_off);
assert(!current_gc);
save_stacks();
current_gc = new gc_state(data,growing_data_heap_,collecting_gen_);
/* Keep trying to GC higher and higher generations until we don't run out
of space */
if(setjmp(current_gc->gc_unwind))
{
/* We come back here if a generation is full */
/* We have no older generations we can try collecting, so we
resort to growing the data heap */
if(current_gc->collecting_tenured_p())
{
current_gc->growing_data_heap = true;
/* Since we start tracing again, any previously
marked code blocks must be re-marked and re-traced */
code->clear_mark_bits();
}
/* we try collecting aging space twice before going on to
collect tenured */
else if(current_gc->collecting_aging_p()
&& !current_gc->collecting_aging_again)
{
current_gc->collecting_aging_again = true;
}
/* Collect the next oldest generation */
else
{
current_gc->collecting_gen++;
}
}
if(current_gc->collecting_nursery_p())
collect_nursery();
else if(current_gc->collecting_aging_p())
{
if(current_gc->collecting_aging_again)
collect_to_tenured();
else
collect_aging();
}
else if(current_gc->collecting_tenured_p())
collect_full(requested_bytes,trace_contexts_p);
record_gc_stats();
delete current_gc;
current_gc = NULL;
}
void factor_vm::gc()
{
garbage_collection(tenured_gen,false,true,0);
}
void factor_vm::primitive_gc()
{
gc();
}
void factor_vm::primitive_gc_stats()
{
growable_array result(this);
cell i;
u64 total_gc_time = 0;
for(i = 0; i < gen_count; i++)
{
generation_statistics *s = &gc_stats.generations[i];
result.add(allot_cell(s->collections));
result.add(tag<bignum>(long_long_to_bignum(s->gc_time)));
result.add(tag<bignum>(long_long_to_bignum(s->max_gc_time)));
result.add(allot_cell(s->collections == 0 ? 0 : s->gc_time / s->collections));
result.add(allot_cell(s->object_count));
result.add(tag<bignum>(long_long_to_bignum(s->bytes_copied)));
total_gc_time += s->gc_time;
}
result.add(tag<bignum>(ulong_long_to_bignum(total_gc_time)));
result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.cards_scanned)));
result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.decks_scanned)));
result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.card_scan_time)));
result.add(allot_cell(gc_stats.code_blocks_scanned));
result.trim();
dpush(result.elements.value());
}
void factor_vm::clear_gc_stats()
{
memset(&gc_stats,0,sizeof(gc_statistics));
}
void factor_vm::primitive_clear_gc_stats()
{
clear_gc_stats();
}
/* classes.tuple uses this to reshape tuples; tools.deploy.shaker uses this
to coalesce equal but distinct quotations and wrappers. */
void factor_vm::primitive_become()
{
array *new_objects = untag_check<array>(dpop());
array *old_objects = untag_check<array>(dpop());
cell capacity = array_capacity(new_objects);
if(capacity != array_capacity(old_objects))
critical_error("bad parameters to become",0);
cell i;
for(i = 0; i < capacity; i++)
{
tagged<object> old_obj(array_nth(old_objects,i));
tagged<object> new_obj(array_nth(new_objects,i));
if(old_obj != new_obj)
old_obj->h.forward_to(new_obj.untagged());
}
gc();
/* If a word's definition quotation was in old_objects and the
quotation in new_objects is not compiled, we might leak memory
by referencing the old quotation unless we recompile all
unoptimized words. */
compile_all_words();
}
void factor_vm::inline_gc(cell *gc_roots_base, cell gc_roots_size)
{
for(cell i = 0; i < gc_roots_size; i++)
gc_locals.push_back((cell)&gc_roots_base[i]);
garbage_collection(nursery_gen,false,true,0);
for(cell i = 0; i < gc_roots_size; i++)
gc_locals.pop_back();
}
VM_C_API void inline_gc(cell *gc_roots_base, cell gc_roots_size, factor_vm *myvm)
{
ASSERTVM();
VM_PTR->inline_gc(gc_roots_base,gc_roots_size);
}
/*
* It is up to the caller to fill in the object's fields in a meaningful
* fashion!
*/
object *factor_vm::allot_object(header header, cell size)
{
#ifdef GC_DEBUG
if(!gc_off)
gc();
#endif
object *obj;
if(nursery.size > size)
{
/* If there is insufficient room, collect the nursery */
if(nursery.here + size > nursery.end)
garbage_collection(nursery_gen,false,true,0);
obj = nursery.allot(size);
}
/* If the object is bigger than the nursery, allocate it in
tenured space */
else
{
/* If tenured space does not have enough room, collect */
if(data->tenured->here + size > data->tenured->end)
gc();
/* If it still won't fit, grow the heap */
if(data->tenured->here + size > data->tenured->end)
garbage_collection(tenured_gen,true,true,size);
obj = data->tenured->allot(size);
/* Allows initialization code to store old->new pointers
without hitting the write barrier in the common case of
a nursery allocation */
write_barrier(obj);
}
obj->h = header;
return obj;
}
}