260 lines
6.5 KiB
C++
Executable File
260 lines
6.5 KiB
C++
Executable File
#include "master.hpp"
|
|
|
|
namespace factor
|
|
{
|
|
|
|
gc_state::gc_state(data_heap *data_, bool growing_data_heap_, cell collecting_gen_) :
|
|
data(data_),
|
|
growing_data_heap(growing_data_heap_),
|
|
collecting_gen(collecting_gen_),
|
|
collecting_aging_again(false),
|
|
start_time(current_micros()) { }
|
|
|
|
gc_state::~gc_state() { }
|
|
|
|
struct literal_and_word_reference_updater {
|
|
factor_vm *myvm;
|
|
|
|
literal_and_word_reference_updater(factor_vm *myvm_) : myvm(myvm_) {}
|
|
|
|
void operator()(heap_block *block)
|
|
{
|
|
code_block *compiled = (code_block *)block;
|
|
myvm->update_literal_references(compiled);
|
|
myvm->update_word_references(compiled);
|
|
}
|
|
};
|
|
|
|
void factor_vm::free_unmarked_code_blocks()
|
|
{
|
|
literal_and_word_reference_updater updater(this);
|
|
code->free_unmarked(updater);
|
|
code->points_to_nursery.clear();
|
|
code->points_to_aging.clear();
|
|
}
|
|
|
|
void factor_vm::update_dirty_code_blocks(std::set<code_block *> *remembered_set)
|
|
{
|
|
/* The youngest generation that any code block can now reference */
|
|
std::set<code_block *>::const_iterator iter = remembered_set->begin();
|
|
std::set<code_block *>::const_iterator end = remembered_set->end();
|
|
|
|
for(; iter != end; iter++) update_literal_references(*iter);
|
|
}
|
|
|
|
void factor_vm::record_gc_stats()
|
|
{
|
|
generation_statistics *s = &gc_stats.generations[current_gc->collecting_gen];
|
|
|
|
cell gc_elapsed = (current_micros() - current_gc->start_time);
|
|
s->collections++;
|
|
s->gc_time += gc_elapsed;
|
|
if(s->max_gc_time < gc_elapsed)
|
|
s->max_gc_time = gc_elapsed;
|
|
}
|
|
|
|
/* Collect gen and all younger generations.
|
|
If growing_data_heap_ is true, we must grow the data heap to such a size that
|
|
an allocation of requested_bytes won't fail */
|
|
void factor_vm::garbage_collection(cell collecting_gen_, bool growing_data_heap_, bool trace_contexts_p, cell requested_bytes)
|
|
{
|
|
assert(!gc_off);
|
|
assert(!current_gc);
|
|
|
|
save_stacks();
|
|
|
|
current_gc = new gc_state(data,growing_data_heap_,collecting_gen_);
|
|
|
|
/* Keep trying to GC higher and higher generations until we don't run out
|
|
of space */
|
|
if(setjmp(current_gc->gc_unwind))
|
|
{
|
|
/* We come back here if a generation is full */
|
|
|
|
/* We have no older generations we can try collecting, so we
|
|
resort to growing the data heap */
|
|
if(current_gc->collecting_tenured_p())
|
|
{
|
|
current_gc->growing_data_heap = true;
|
|
|
|
/* Since we start tracing again, any previously
|
|
marked code blocks must be re-marked and re-traced */
|
|
code->clear_mark_bits();
|
|
}
|
|
/* we try collecting aging space twice before going on to
|
|
collect tenured */
|
|
else if(current_gc->collecting_aging_p()
|
|
&& !current_gc->collecting_aging_again)
|
|
{
|
|
current_gc->collecting_aging_again = true;
|
|
}
|
|
/* Collect the next oldest generation */
|
|
else
|
|
{
|
|
current_gc->collecting_gen++;
|
|
}
|
|
}
|
|
|
|
if(current_gc->collecting_nursery_p())
|
|
collect_nursery();
|
|
else if(current_gc->collecting_aging_p())
|
|
{
|
|
if(current_gc->collecting_aging_again)
|
|
collect_to_tenured();
|
|
else
|
|
collect_aging();
|
|
}
|
|
else if(current_gc->collecting_tenured_p())
|
|
collect_full(requested_bytes,trace_contexts_p);
|
|
|
|
record_gc_stats();
|
|
|
|
delete current_gc;
|
|
current_gc = NULL;
|
|
}
|
|
|
|
void factor_vm::gc()
|
|
{
|
|
garbage_collection(tenured_gen,false,true,0);
|
|
}
|
|
|
|
void factor_vm::primitive_gc()
|
|
{
|
|
gc();
|
|
}
|
|
|
|
void factor_vm::primitive_gc_stats()
|
|
{
|
|
growable_array result(this);
|
|
|
|
cell i;
|
|
u64 total_gc_time = 0;
|
|
|
|
for(i = 0; i < gen_count; i++)
|
|
{
|
|
generation_statistics *s = &gc_stats.generations[i];
|
|
result.add(allot_cell(s->collections));
|
|
result.add(tag<bignum>(long_long_to_bignum(s->gc_time)));
|
|
result.add(tag<bignum>(long_long_to_bignum(s->max_gc_time)));
|
|
result.add(allot_cell(s->collections == 0 ? 0 : s->gc_time / s->collections));
|
|
result.add(allot_cell(s->object_count));
|
|
result.add(tag<bignum>(long_long_to_bignum(s->bytes_copied)));
|
|
|
|
total_gc_time += s->gc_time;
|
|
}
|
|
|
|
result.add(tag<bignum>(ulong_long_to_bignum(total_gc_time)));
|
|
result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.cards_scanned)));
|
|
result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.decks_scanned)));
|
|
result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.card_scan_time)));
|
|
result.add(allot_cell(gc_stats.code_blocks_scanned));
|
|
|
|
result.trim();
|
|
dpush(result.elements.value());
|
|
}
|
|
|
|
void factor_vm::clear_gc_stats()
|
|
{
|
|
memset(&gc_stats,0,sizeof(gc_statistics));
|
|
}
|
|
|
|
void factor_vm::primitive_clear_gc_stats()
|
|
{
|
|
clear_gc_stats();
|
|
}
|
|
|
|
/* classes.tuple uses this to reshape tuples; tools.deploy.shaker uses this
|
|
to coalesce equal but distinct quotations and wrappers. */
|
|
void factor_vm::primitive_become()
|
|
{
|
|
array *new_objects = untag_check<array>(dpop());
|
|
array *old_objects = untag_check<array>(dpop());
|
|
|
|
cell capacity = array_capacity(new_objects);
|
|
if(capacity != array_capacity(old_objects))
|
|
critical_error("bad parameters to become",0);
|
|
|
|
cell i;
|
|
|
|
for(i = 0; i < capacity; i++)
|
|
{
|
|
tagged<object> old_obj(array_nth(old_objects,i));
|
|
tagged<object> new_obj(array_nth(new_objects,i));
|
|
|
|
if(old_obj != new_obj)
|
|
old_obj->h.forward_to(new_obj.untagged());
|
|
}
|
|
|
|
gc();
|
|
|
|
/* If a word's definition quotation was in old_objects and the
|
|
quotation in new_objects is not compiled, we might leak memory
|
|
by referencing the old quotation unless we recompile all
|
|
unoptimized words. */
|
|
compile_all_words();
|
|
}
|
|
|
|
void factor_vm::inline_gc(cell *gc_roots_base, cell gc_roots_size)
|
|
{
|
|
for(cell i = 0; i < gc_roots_size; i++)
|
|
gc_locals.push_back((cell)&gc_roots_base[i]);
|
|
|
|
garbage_collection(nursery_gen,false,true,0);
|
|
|
|
for(cell i = 0; i < gc_roots_size; i++)
|
|
gc_locals.pop_back();
|
|
}
|
|
|
|
VM_C_API void inline_gc(cell *gc_roots_base, cell gc_roots_size, factor_vm *myvm)
|
|
{
|
|
ASSERTVM();
|
|
VM_PTR->inline_gc(gc_roots_base,gc_roots_size);
|
|
}
|
|
|
|
/*
|
|
* It is up to the caller to fill in the object's fields in a meaningful
|
|
* fashion!
|
|
*/
|
|
object *factor_vm::allot_object(header header, cell size)
|
|
{
|
|
#ifdef GC_DEBUG
|
|
if(!gc_off)
|
|
gc();
|
|
#endif
|
|
|
|
object *obj;
|
|
|
|
if(nursery.size > size)
|
|
{
|
|
/* If there is insufficient room, collect the nursery */
|
|
if(nursery.here + size > nursery.end)
|
|
garbage_collection(nursery_gen,false,true,0);
|
|
|
|
obj = nursery.allot(size);
|
|
}
|
|
/* If the object is bigger than the nursery, allocate it in
|
|
tenured space */
|
|
else
|
|
{
|
|
/* If tenured space does not have enough room, collect */
|
|
if(data->tenured->here + size > data->tenured->end)
|
|
gc();
|
|
|
|
/* If it still won't fit, grow the heap */
|
|
if(data->tenured->here + size > data->tenured->end)
|
|
garbage_collection(tenured_gen,true,true,size);
|
|
|
|
obj = data->tenured->allot(size);
|
|
|
|
/* Allows initialization code to store old->new pointers
|
|
without hitting the write barrier in the common case of
|
|
a nursery allocation */
|
|
write_barrier(obj);
|
|
}
|
|
|
|
obj->h = header;
|
|
return obj;
|
|
}
|
|
|
|
}
|