factor/extra/project-euler/common/common.factor

130 lines
3.5 KiB
Factor

! Copyright (c) 2007-2008 Aaron Schaefer.
! See http://factorcode.org/license.txt for BSD license.
USING: arrays kernel make math math.functions math.matrices math.miller-rabin
math.order math.parser math.primes.factors math.ranges math.ratios
sequences sorting strings unicode.case ;
IN: project-euler.common
! A collection of words used by more than one Project Euler solution
! and/or related words that could be useful for future problems.
! Problems using each public word
! -------------------------------
! alpha-value - #22, #42
! cartesian-product - #4, #27, #29, #32, #33, #43, #44, #56
! log10 - #25, #134
! max-path - #18, #67
! mediant - #71, #73
! nth-triangle - #12, #42
! number>digits - #16, #20, #30, #34, #35, #38, #43, #52, #55, #56, #92
! palindrome? - #4, #36, #55
! pandigital? - #32, #38
! pentagonal? - #44, #45
! propagate-all - #18, #67
! sum-proper-divisors - #21
! tau* - #12
! [uad]-transform - #39, #75
: nth-pair ( seq n -- nth next )
tail-slice first2 ;
: perfect-square? ( n -- ? )
dup sqrt mod zero? ;
<PRIVATE
: max-children ( seq -- seq )
[ dup length 1- [ nth-pair max , ] with each ] { } make ;
! Propagate one row into the upper one
: propagate ( bottom top -- newtop )
[ over rest rot first2 max rot + ] map nip ;
: (sum-divisors) ( n -- sum )
dup sqrt >integer [1,b] [
[ 2dup mod 0 = [ 2dup / + , ] [ drop ] if ] each
dup perfect-square? [ sqrt >fixnum neg , ] [ drop ] if
] { } make sum ;
: transform ( triple matrix -- new-triple )
[ 1array ] dip m. first ;
PRIVATE>
: alpha-value ( str -- n )
>lower [ CHAR: a - 1+ ] sigma ;
: cartesian-product ( seq1 seq2 -- seq1xseq2 )
swap [ swap [ 2array ] with map ] with map concat ;
: log10 ( m -- n )
log 10 log / ;
: mediant ( a/c b/d -- (a+b)/(c+d) )
2>fraction [ + ] 2bi@ / ;
: max-path ( triangle -- n )
dup length 1 > [
2 cut* first2 max-children [ + ] 2map suffix max-path
] [
first first
] if ;
: number>digits ( n -- seq )
[ dup 0 = not ] [ 10 /mod ] produce reverse nip ;
: nth-triangle ( n -- n )
dup 1+ * 2 / ;
: palindrome? ( n -- ? )
number>string dup reverse = ;
: pandigital? ( n -- ? )
number>string natural-sort >string "123456789" = ;
: pentagonal? ( n -- ? )
dup 0 > [ 24 * 1+ sqrt 1+ 6 / 1 mod zero? ] [ drop f ] if ;
! Not strictly needed, but it is nice to be able to dump the triangle after the
! propagation
: propagate-all ( triangle -- new-triangle )
reverse [ first dup ] [ rest ] bi
[ propagate dup ] map nip reverse swap suffix ;
: sum-divisors ( n -- sum )
dup 4 < [ { 0 1 3 4 } nth ] [ (sum-divisors) ] if ;
: sum-proper-divisors ( n -- sum )
dup sum-divisors swap - ;
: abundant? ( n -- ? )
dup sum-proper-divisors < ;
: deficient? ( n -- ? )
dup sum-proper-divisors > ;
: perfect? ( n -- ? )
dup sum-proper-divisors = ;
! The divisor function, counts the number of divisors
: tau ( m -- n )
group-factors flip second 1 [ 1+ * ] reduce ;
! Optimized brute-force, is often faster than prime factorization
: tau* ( m -- n )
factor-2s dup [ 1+ ]
[ perfect-square? -1 0 ? ]
[ dup sqrt >fixnum [1,b] ] tri* [
dupd mod 0 = [ [ 2 + ] dip ] when
] each drop * ;
! These transforms are for generating primitive Pythagorean triples
: u-transform ( triple -- new-triple )
{ { 1 2 2 } { -2 -1 -2 } { 2 2 3 } } transform ;
: a-transform ( triple -- new-triple )
{ { 1 2 2 } { 2 1 2 } { 2 2 3 } } transform ;
: d-transform ( triple -- new-triple )
{ { -1 -2 -2 } { 2 1 2 } { 2 2 3 } } transform ;