163 lines
4.8 KiB
C++
163 lines
4.8 KiB
C++
#include "master.hpp"
|
|
|
|
namespace factor {
|
|
|
|
bool factor_vm::fatal_erroring_p;
|
|
|
|
static inline void fa_diddly_atal_error() {
|
|
printf("fatal_error in fatal_error!\n");
|
|
breakpoint();
|
|
::_exit(86);
|
|
}
|
|
|
|
void fatal_error(const char* msg, cell tagged) {
|
|
if (factor_vm::fatal_erroring_p)
|
|
fa_diddly_atal_error();
|
|
|
|
factor_vm::fatal_erroring_p = true;
|
|
|
|
std::cout << "fatal_error: " << msg;
|
|
std::cout << ": " << (void*)tagged;
|
|
std::cout << std::endl << std::endl;
|
|
factor_vm* vm = current_vm();
|
|
if (vm->data) {
|
|
vm->dump_memory_layout(std::cout);
|
|
}
|
|
abort();
|
|
}
|
|
|
|
void critical_error(const char* msg, cell tagged) {
|
|
std::cout << "You have triggered a bug in Factor. Please report.\n";
|
|
std::cout << "critical_error: " << msg;
|
|
std::cout << ": " << std::hex << tagged << std::dec;
|
|
std::cout << std::endl;
|
|
current_vm()->factorbug();
|
|
}
|
|
|
|
// Allocates memory
|
|
void factor_vm::general_error(vm_error_type error, cell arg1_, cell arg2_) {
|
|
|
|
data_root<object> arg1(arg1_, this);
|
|
data_root<object> arg2(arg2_, this);
|
|
|
|
faulting_p = true;
|
|
|
|
// If we had an underflow or overflow, data or retain stack
|
|
// pointers might be out of bounds, so fix them before allocating
|
|
// anything
|
|
ctx->fix_stacks();
|
|
|
|
// If error was thrown during heap scan, we re-enable the GC
|
|
gc_off = false;
|
|
|
|
// If the error handler is set, we rewind any C stack frames and
|
|
// pass the error to user-space.
|
|
if (!current_gc && to_boolean(special_objects[ERROR_HANDLER_QUOT])) {
|
|
#ifdef FACTOR_DEBUG
|
|
// Doing a GC here triggers all kinds of funny errors
|
|
primitive_compact_gc();
|
|
#endif
|
|
|
|
// Now its safe to allocate and GC
|
|
cell error_object =
|
|
allot_array_4(tag_fixnum(KERNEL_ERROR), tag_fixnum(error),
|
|
arg1.value(), arg2.value());
|
|
ctx->push(error_object);
|
|
|
|
// Clear the data roots since arg1 and arg2's destructors won't be
|
|
// called.
|
|
data_roots.clear();
|
|
|
|
// The unwind-native-frames subprimitive will clear faulting_p
|
|
// if it was successfully reached.
|
|
unwind_native_frames(special_objects[ERROR_HANDLER_QUOT],
|
|
ctx->callstack_top);
|
|
} // Error was thrown in early startup before error handler is set, so just
|
|
// crash.
|
|
else {
|
|
std::cout << "You have triggered a bug in Factor. Please report.\n";
|
|
std::cout << "error: " << error << std::endl;
|
|
std::cout << "arg 1: ";
|
|
print_obj(std::cout, arg1.value());
|
|
std::cout << std::endl;
|
|
std::cout << "arg 2: ";
|
|
print_obj(std::cout, arg2.value());
|
|
std::cout << std::endl;
|
|
factorbug();
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// Allocates memory
|
|
void factor_vm::type_error(cell type, cell tagged) {
|
|
general_error(ERROR_TYPE, tag_fixnum(type), tagged);
|
|
}
|
|
|
|
// Allocates memory
|
|
void factor_vm::not_implemented_error() {
|
|
general_error(ERROR_NOT_IMPLEMENTED, false_object, false_object);
|
|
}
|
|
|
|
void factor_vm::set_memory_protection_error(cell fault_addr, cell fault_pc) {
|
|
// Called from the OS-specific top halves of the signal handlers to
|
|
// make sure it's safe to dispatch to memory_signal_handler_impl.
|
|
if (fatal_erroring_p)
|
|
fa_diddly_atal_error();
|
|
if (faulting_p && !code->safepoint_p(fault_addr))
|
|
fatal_error("Double fault", fault_addr);
|
|
else if (fep_p)
|
|
fatal_error("Memory protection fault during low-level debugger", fault_addr);
|
|
else if (atomic::load(¤t_gc_p))
|
|
fatal_error("Memory protection fault during gc", fault_addr);
|
|
signal_fault_addr = fault_addr;
|
|
signal_fault_pc = fault_pc;
|
|
}
|
|
|
|
// Allocates memory
|
|
void factor_vm::divide_by_zero_error() {
|
|
general_error(ERROR_DIVIDE_BY_ZERO, false_object, false_object);
|
|
}
|
|
|
|
// For testing purposes
|
|
// Allocates memory
|
|
void factor_vm::primitive_unimplemented() { not_implemented_error(); }
|
|
|
|
// Allocates memory
|
|
void memory_signal_handler_impl() {
|
|
factor_vm* vm = current_vm();
|
|
if (vm->code->safepoint_p(vm->signal_fault_addr)) {
|
|
vm->handle_safepoint(vm->signal_fault_pc);
|
|
}
|
|
else {
|
|
vm_error_type type = vm->ctx->address_to_error(vm->signal_fault_addr);
|
|
cell number = vm->from_unsigned_cell(vm->signal_fault_addr);
|
|
vm->general_error(type, number, false_object);
|
|
}
|
|
if (!vm->signal_resumable) {
|
|
// In theory we should only get here if the callstack overflowed during a
|
|
// safepoint
|
|
vm->general_error(ERROR_CALLSTACK_OVERFLOW, false_object, false_object);
|
|
}
|
|
}
|
|
|
|
// Allocates memory
|
|
void synchronous_signal_handler_impl() {
|
|
factor_vm* vm = current_vm();
|
|
vm->general_error(ERROR_SIGNAL,
|
|
vm->from_unsigned_cell(vm->signal_number),
|
|
false_object);
|
|
}
|
|
|
|
// Allocates memory
|
|
void fp_signal_handler_impl() {
|
|
factor_vm* vm = current_vm();
|
|
|
|
// Clear pending exceptions to avoid getting stuck in a loop
|
|
vm->set_fpu_state(vm->get_fpu_state());
|
|
|
|
vm->general_error(ERROR_FP_TRAP,
|
|
tag_fixnum(vm->signal_fpu_status),
|
|
false_object);
|
|
}
|
|
}
|