227 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
namespace factor {
 | 
						|
 | 
						|
static const cell free_list_count = 32;
 | 
						|
static const cell allocation_page_size = 1024;
 | 
						|
 | 
						|
struct free_heap_block {
 | 
						|
  cell header;
 | 
						|
 | 
						|
  bool free_p() const { return (header & 1) == 1; }
 | 
						|
 | 
						|
  cell size() const {
 | 
						|
    cell size = header & ~7;
 | 
						|
    FACTOR_ASSERT(size > 0);
 | 
						|
    return size;
 | 
						|
  }
 | 
						|
 | 
						|
  void make_free(cell size) {
 | 
						|
    FACTOR_ASSERT(size > 0);
 | 
						|
    header = size | 1;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct block_size_compare {
 | 
						|
  bool operator()(free_heap_block* a, free_heap_block* b) const {
 | 
						|
    return a->size() < b->size();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
typedef std::multiset<free_heap_block*, block_size_compare> large_block_set;
 | 
						|
 | 
						|
struct free_list {
 | 
						|
  std::vector<free_heap_block*> small_blocks[free_list_count];
 | 
						|
  large_block_set large_blocks;
 | 
						|
  cell free_block_count;
 | 
						|
  cell free_space;
 | 
						|
 | 
						|
  void clear_free_list();
 | 
						|
  void initial_free_list(cell start, cell end, cell occupied);
 | 
						|
  void add_to_free_list(free_heap_block* block);
 | 
						|
  free_heap_block* find_free_block(cell size);
 | 
						|
  free_heap_block* split_free_block(free_heap_block* block, cell size);
 | 
						|
  bool can_allot_p(cell size);
 | 
						|
  cell largest_free_block();
 | 
						|
};
 | 
						|
 | 
						|
struct allocator_room {
 | 
						|
  cell size;
 | 
						|
  cell occupied_space;
 | 
						|
  cell total_free;
 | 
						|
  cell contiguous_free;
 | 
						|
  cell free_block_count;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Block> struct free_list_allocator {
 | 
						|
  cell size;
 | 
						|
  cell start;
 | 
						|
  cell end;
 | 
						|
  free_list free_blocks;
 | 
						|
  mark_bits state;
 | 
						|
 | 
						|
  free_list_allocator(cell size, cell start);
 | 
						|
  void initial_free_list(cell occupied);
 | 
						|
  bool contains_p(Block* block);
 | 
						|
  bool can_allot_p(cell size);
 | 
						|
  Block* allot(cell size);
 | 
						|
  void free(Block* block);
 | 
						|
  cell occupied_space();
 | 
						|
  cell free_space();
 | 
						|
  cell largest_free_block();
 | 
						|
  cell free_block_count();
 | 
						|
  void sweep();
 | 
						|
  template <typename Iterator> void sweep(Iterator& iter);
 | 
						|
  template <typename Iterator, typename Fixup>
 | 
						|
  void compact(Iterator& iter, Fixup fixup, const Block** finger);
 | 
						|
  template <typename Iterator, typename Fixup>
 | 
						|
  void iterate(Iterator& iter, Fixup fixup);
 | 
						|
  template <typename Iterator> void iterate(Iterator& iter);
 | 
						|
  allocator_room as_allocator_room();
 | 
						|
};
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
free_list_allocator<Block>::free_list_allocator(cell size, cell start)
 | 
						|
    : size(size),
 | 
						|
      start(start),
 | 
						|
      end(start + size),
 | 
						|
      state(mark_bits(size, start)) {
 | 
						|
  initial_free_list(0);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
void free_list_allocator<Block>::initial_free_list(cell occupied) {
 | 
						|
  free_blocks.initial_free_list(start, end, occupied);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
bool free_list_allocator<Block>::contains_p(Block* block) {
 | 
						|
  return ((cell)block - start) < size;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
bool free_list_allocator<Block>::can_allot_p(cell size) {
 | 
						|
  return free_blocks.can_allot_p(size);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> Block* free_list_allocator<Block>::allot(cell size) {
 | 
						|
  size = align(size, data_alignment);
 | 
						|
 | 
						|
  free_heap_block* block = free_blocks.find_free_block(size);
 | 
						|
  if (block) {
 | 
						|
    block = free_blocks.split_free_block(block, size);
 | 
						|
    return (Block*)block;
 | 
						|
  } else
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> void free_list_allocator<Block>::free(Block* block) {
 | 
						|
  free_heap_block* free_block = (free_heap_block*)block;
 | 
						|
  free_block->make_free(block->size());
 | 
						|
  free_blocks.add_to_free_list(free_block);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> cell free_list_allocator<Block>::free_space() {
 | 
						|
  return free_blocks.free_space;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> cell free_list_allocator<Block>::occupied_space() {
 | 
						|
  return size - free_blocks.free_space;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
cell free_list_allocator<Block>::largest_free_block() {
 | 
						|
  return free_blocks.largest_free_block();
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> cell free_list_allocator<Block>::free_block_count() {
 | 
						|
  return free_blocks.free_block_count;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator>
 | 
						|
void free_list_allocator<Block>::sweep(Iterator& iter) {
 | 
						|
  free_blocks.clear_free_list();
 | 
						|
 | 
						|
  cell start = this->start;
 | 
						|
  cell end = this->end;
 | 
						|
 | 
						|
  while (start != end) {
 | 
						|
    /* find next unmarked block */
 | 
						|
    start = state.next_unmarked_block_after(start);
 | 
						|
 | 
						|
    if (start != end) {
 | 
						|
      /* find size */
 | 
						|
      cell size = state.unmarked_block_size(start);
 | 
						|
      FACTOR_ASSERT(size > 0);
 | 
						|
 | 
						|
      free_heap_block* free_block = (free_heap_block*)start;
 | 
						|
      free_block->make_free(size);
 | 
						|
      free_blocks.add_to_free_list(free_block);
 | 
						|
      iter((Block*)start, size);
 | 
						|
 | 
						|
      start = start + size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> void free_list_allocator<Block>::sweep() {
 | 
						|
  auto null_sweep = [](Block* free_block, cell size) { };
 | 
						|
  sweep(null_sweep);
 | 
						|
}
 | 
						|
 | 
						|
/* The forwarding map must be computed first by calling
 | 
						|
   state.compute_forwarding(). */
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator, typename Fixup>
 | 
						|
void free_list_allocator<Block>::compact(Iterator& iter, Fixup fixup,
 | 
						|
                                         const Block** finger) {
 | 
						|
  cell dest_addr = start;
 | 
						|
  auto compact_block_func = [&](Block* block, cell size) {
 | 
						|
    cell block_addr = (cell)block;
 | 
						|
    if (!state.marked_p(block_addr))
 | 
						|
      return;
 | 
						|
    *finger = (Block*)(block_addr + size);
 | 
						|
    memmove((Block*)dest_addr, block, size);
 | 
						|
    iter(block, (Block*)dest_addr, size);
 | 
						|
    dest_addr += size;
 | 
						|
  };
 | 
						|
  iterate(compact_block_func, fixup);
 | 
						|
 | 
						|
  /* Now update the free list; there will be a single free block at
 | 
						|
     the end */
 | 
						|
  free_blocks.initial_free_list(start, end, dest_addr - start);
 | 
						|
}
 | 
						|
 | 
						|
/* During compaction we have to be careful and measure object sizes
 | 
						|
   differently */
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator, typename Fixup>
 | 
						|
void free_list_allocator<Block>::iterate(Iterator& iter, Fixup fixup) {
 | 
						|
  cell scan = this->start;
 | 
						|
  while (scan != this->end) {
 | 
						|
    Block* block = (Block*)scan;
 | 
						|
    cell size = fixup.size(block);
 | 
						|
    if (!block->free_p())
 | 
						|
      iter(block, size);
 | 
						|
    scan += size;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator>
 | 
						|
void free_list_allocator<Block>::iterate(Iterator& iter) {
 | 
						|
  iterate(iter, no_fixup());
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
allocator_room free_list_allocator<Block>::as_allocator_room() {
 | 
						|
  allocator_room room;
 | 
						|
  room.size = size;
 | 
						|
  room.occupied_space = occupied_space();
 | 
						|
  room.total_free = free_space();
 | 
						|
  room.contiguous_free = largest_free_block();
 | 
						|
  room.free_block_count = free_block_count();
 | 
						|
  return room;
 | 
						|
}
 | 
						|
 | 
						|
}
 |