factor/library/math/complex.factor

105 lines
3.1 KiB
Factor

! :folding=indent:collapseFolds=0:
! $Id$
!
! Copyright (C) 2004 Slava Pestov.
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions are met:
!
! 1. Redistributions of source code must retain the above copyright notice,
! this list of conditions and the following disclaimer.
!
! 2. Redistributions in binary form must reproduce the above copyright notice,
! this list of conditions and the following disclaimer in the documentation
! and/or other materials provided with the distribution.
!
! THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
! INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
! FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
! DEVELOPERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
! PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
! OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
! WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
! OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
! ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
IN: errors
DEFER: throw
IN: math-internals
USE: generic
USE: kernel
USE: kernel-internals
USE: math
: (rect>) ( xr xi -- x )
#! Does not perform a check that the arguments are reals.
#! Do not use in your own code.
dup 0 number= [ drop ] [ <complex> ] ifte ; inline
IN: math
GENERIC: real ( #{ re im }# -- re )
M: real real ;
M: complex real 0 slot %real ;
GENERIC: imaginary ( #{ re im }# -- im )
M: real imaginary drop 0 ;
M: complex imaginary 1 slot %real ;
: rect> ( xr xi -- x )
over real? over real? and [
(rect>)
] [
"Complex number must have real components" throw drop
] ifte ; inline
: >rect ( x -- xr xi ) dup real swap imaginary ; inline
: conjugate ( z -- z* )
>rect neg rect> ;
: arg ( z -- arg )
#! Compute the complex argument.
>rect swap fatan2 ;
: >polar ( z -- abs arg )
>rect 2dup swap fatan2 >r mag2 r> ;
: cis ( theta -- cis )
dup fcos swap fsin rect> ;
: polar> ( abs arg -- z )
cis * ;
IN: math-internals
: 2>rect ( x y -- xr yr xi yi )
[ swap real swap real ] 2keep
swap imaginary swap imaginary ; inline
M: complex number= ( x y -- ? )
2>rect number= [ number= ] [ 2drop f ] ifte ;
: *re ( x y -- xr*yr xi*ri ) 2>rect * >r * r> ; inline
: *im ( x y -- xi*yr xr*yi ) 2>rect >r * swap r> * ; inline
M: complex + 2>rect + >r + r> (rect>) ;
M: complex - 2>rect - >r - r> (rect>) ;
M: complex * ( x y -- x*y ) 2dup *re - -rot *im + (rect>) ;
: abs^2 ( x -- y ) >rect sq swap sq + ; inline
: complex/ ( x y -- r i m )
#! r = xr*yr+xi*yi, i = xi*yr-xr*yi, m = yr*yr+yi*yi
dup abs^2 >r 2dup *re + -rot *im - r> ; inline
M: complex / ( x y -- x/y ) complex/ tuck / >r / r> (rect>) ;
M: complex /f ( x y -- x/y ) complex/ tuck /f >r /f r> (rect>) ;
M: complex abs ( z -- |z| ) >rect mag2 ;
M: complex hashcode ( n -- n )
>rect >fixnum swap >fixnum bitxor ;