factor/vm/gc.cpp

287 lines
5.7 KiB
C++
Executable File

#include "master.hpp"
namespace factor
{
gc_event::gc_event(gc_op op_, factor_vm *parent) :
op(op_),
cards_scanned(0),
decks_scanned(0),
code_blocks_scanned(0),
start_time(nano_count()),
card_scan_time(0),
code_scan_time(0),
data_sweep_time(0),
code_sweep_time(0),
compaction_time(0)
{
data_heap_before = parent->data_room();
code_heap_before = parent->code_room();
start_time = nano_count();
}
void gc_event::started_card_scan()
{
temp_time = nano_count();
}
void gc_event::ended_card_scan(cell cards_scanned_, cell decks_scanned_)
{
cards_scanned += cards_scanned_;
decks_scanned += decks_scanned_;
card_scan_time = (cell)(nano_count() - temp_time);
}
void gc_event::started_code_scan()
{
temp_time = nano_count();
}
void gc_event::ended_code_scan(cell code_blocks_scanned_)
{
code_blocks_scanned += code_blocks_scanned_;
code_scan_time = (cell)(nano_count() - temp_time);
}
void gc_event::started_data_sweep()
{
temp_time = nano_count();
}
void gc_event::ended_data_sweep()
{
data_sweep_time = (cell)(nano_count() - temp_time);
}
void gc_event::started_code_sweep()
{
temp_time = nano_count();
}
void gc_event::ended_code_sweep()
{
code_sweep_time = (cell)(nano_count() - temp_time);
}
void gc_event::started_compaction()
{
temp_time = nano_count();
}
void gc_event::ended_compaction()
{
compaction_time = (cell)(nano_count() - temp_time);
}
void gc_event::ended_gc(factor_vm *parent)
{
data_heap_after = parent->data_room();
code_heap_after = parent->code_room();
total_time = (cell)(nano_count() - start_time);
}
gc_state::gc_state(gc_op op_, factor_vm *parent) : op(op_), start_time(nano_count())
{
event = new gc_event(op,parent);
}
gc_state::~gc_state()
{
delete event;
event = NULL;
}
void factor_vm::end_gc()
{
current_gc->event->ended_gc(this);
if(gc_events) gc_events->push_back(*current_gc->event);
delete current_gc->event;
current_gc->event = NULL;
}
void factor_vm::start_gc_again()
{
end_gc();
switch(current_gc->op)
{
case collect_nursery_op:
current_gc->op = collect_aging_op;
break;
case collect_aging_op:
current_gc->op = collect_to_tenured_op;
break;
case collect_to_tenured_op:
current_gc->op = collect_full_op;
break;
case collect_full_op:
case collect_compact_op:
current_gc->op = collect_growing_heap_op;
break;
default:
critical_error("Bad GC op",current_gc->op);
break;
}
current_gc->event = new gc_event(current_gc->op,this);
}
void factor_vm::gc(gc_op op, cell requested_bytes, bool trace_contexts_p)
{
assert(!gc_off);
assert(!current_gc);
current_gc = new gc_state(op,this);
/* Keep trying to GC higher and higher generations until we don't run out
of space */
if(setjmp(current_gc->gc_unwind))
{
/* We come back here if a generation is full */
start_gc_again();
}
current_gc->event->op = current_gc->op;
switch(current_gc->op)
{
case collect_nursery_op:
collect_nursery();
break;
case collect_aging_op:
collect_aging();
if(data->high_fragmentation_p())
{
current_gc->op = collect_full_op;
current_gc->event->op = collect_full_op;
collect_full(trace_contexts_p);
}
break;
case collect_to_tenured_op:
collect_to_tenured();
if(data->high_fragmentation_p())
{
current_gc->op = collect_full_op;
current_gc->event->op = collect_full_op;
collect_full(trace_contexts_p);
}
break;
case collect_full_op:
collect_full(trace_contexts_p);
break;
case collect_compact_op:
collect_compact(trace_contexts_p);
break;
case collect_growing_heap_op:
collect_growing_heap(requested_bytes,trace_contexts_p);
break;
default:
critical_error("Bad GC op",current_gc->op);
break;
}
end_gc();
delete current_gc;
current_gc = NULL;
}
void factor_vm::primitive_minor_gc()
{
gc(collect_nursery_op,
0, /* requested size */
true /* trace contexts? */);
}
void factor_vm::primitive_full_gc()
{
gc(collect_full_op,
0, /* requested size */
true /* trace contexts? */);
}
void factor_vm::primitive_compact_gc()
{
gc(collect_compact_op,
0, /* requested size */
true /* trace contexts? */);
}
void factor_vm::inline_gc(cell *data_roots_base, cell data_roots_size)
{
data_roots.push_back(data_root_range(data_roots_base,data_roots_size));
primitive_minor_gc();
data_roots.pop_back();
}
VM_C_API void inline_gc(cell *data_roots_base, cell data_roots_size, factor_vm *parent)
{
parent->inline_gc(data_roots_base,data_roots_size);
}
/*
* It is up to the caller to fill in the object's fields in a meaningful
* fashion!
*/
object *factor_vm::allot_large_object(cell type, cell size)
{
/* If tenured space does not have enough room, collect and compact */
if(!data->tenured->can_allot_p(size))
{
primitive_compact_gc();
/* If it still won't fit, grow the heap */
if(!data->tenured->can_allot_p(size))
{
gc(collect_growing_heap_op,
size, /* requested size */
true /* trace contexts? */);
}
}
object *obj = data->tenured->allot(size);
/* Allows initialization code to store old->new pointers
without hitting the write barrier in the common case of
a nursery allocation */
write_barrier(obj,size);
obj->initialize(type);
return obj;
}
void factor_vm::primitive_enable_gc_events()
{
gc_events = new std::vector<gc_event>();
}
void factor_vm::primitive_disable_gc_events()
{
if(gc_events)
{
growable_array result(this);
std::vector<gc_event> *gc_events = this->gc_events;
this->gc_events = NULL;
std::vector<gc_event>::const_iterator iter = gc_events->begin();
std::vector<gc_event>::const_iterator end = gc_events->end();
for(; iter != end; iter++)
{
gc_event event = *iter;
byte_array *obj = byte_array_from_value(&event);
result.add(tag<byte_array>(obj));
}
result.trim();
ctx->push(result.elements.value());
delete this->gc_events;
}
else
ctx->push(false_object);
}
}