716 lines
16 KiB
C
Executable File
716 lines
16 KiB
C
Executable File
#include "master.h"
|
|
|
|
/* FFI calls this */
|
|
void box_boolean(bool value)
|
|
{
|
|
dpush(value ? T : F);
|
|
}
|
|
|
|
/* FFI calls this */
|
|
bool to_boolean(CELL value)
|
|
{
|
|
return value != F;
|
|
}
|
|
|
|
CELL clone(CELL object)
|
|
{
|
|
CELL size = object_size(object);
|
|
if(size == 0)
|
|
return object;
|
|
else
|
|
{
|
|
REGISTER_ROOT(object);
|
|
void *new_obj = allot_object(type_of(object),size);
|
|
UNREGISTER_ROOT(object);
|
|
|
|
CELL tag = TAG(object);
|
|
memcpy(new_obj,(void*)UNTAG(object),size);
|
|
return RETAG(new_obj,tag);
|
|
}
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(clone)
|
|
{
|
|
drepl(clone(dpeek()));
|
|
}
|
|
|
|
F_WORD *allot_word(CELL vocab, CELL name)
|
|
{
|
|
REGISTER_ROOT(vocab);
|
|
REGISTER_ROOT(name);
|
|
F_WORD *word = allot_object(WORD_TYPE,sizeof(F_WORD));
|
|
UNREGISTER_ROOT(name);
|
|
UNREGISTER_ROOT(vocab);
|
|
|
|
word->hashcode = tag_fixnum((rand() << 16) ^ rand());
|
|
word->vocabulary = vocab;
|
|
word->name = name;
|
|
word->def = userenv[UNDEFINED_ENV];
|
|
word->props = F;
|
|
word->counter = tag_fixnum(0);
|
|
word->compiledp = F;
|
|
word->profiling = NULL;
|
|
word->code = NULL;
|
|
|
|
REGISTER_UNTAGGED(word);
|
|
default_word_code(word,true);
|
|
UNREGISTER_UNTAGGED(word);
|
|
|
|
REGISTER_UNTAGGED(word);
|
|
update_word_xt(word);
|
|
UNREGISTER_UNTAGGED(word);
|
|
|
|
return word;
|
|
}
|
|
|
|
/* <word> ( name vocabulary -- word ) */
|
|
DEFINE_PRIMITIVE(word)
|
|
{
|
|
CELL vocab = dpop();
|
|
CELL name = dpop();
|
|
dpush(tag_object(allot_word(vocab,name)));
|
|
}
|
|
|
|
/* word-xt ( word -- start end ) */
|
|
DEFINE_PRIMITIVE(word_xt)
|
|
{
|
|
F_WORD *word = untag_word(dpop());
|
|
F_COMPILED *code = word->code;
|
|
dpush(allot_cell((CELL)code + sizeof(F_COMPILED)));
|
|
dpush(allot_cell((CELL)code + sizeof(F_COMPILED) + code->code_length));
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(wrapper)
|
|
{
|
|
F_WRAPPER *wrapper = allot_object(WRAPPER_TYPE,sizeof(F_WRAPPER));
|
|
wrapper->object = dpeek();
|
|
drepl(tag_object(wrapper));
|
|
}
|
|
|
|
/* Arrays */
|
|
|
|
/* the array is full of undefined data, and must be correctly filled before the
|
|
next GC. size is in cells */
|
|
F_ARRAY *allot_array_internal(CELL type, CELL capacity)
|
|
{
|
|
F_ARRAY *array = allot_object(type,array_size(capacity));
|
|
array->capacity = tag_fixnum(capacity);
|
|
return array;
|
|
}
|
|
|
|
/* make a new array with an initial element */
|
|
F_ARRAY *allot_array(CELL type, CELL capacity, CELL fill)
|
|
{
|
|
int i;
|
|
REGISTER_ROOT(fill);
|
|
F_ARRAY* array = allot_array_internal(type, capacity);
|
|
UNREGISTER_ROOT(fill);
|
|
if(fill == 0)
|
|
memset((void*)AREF(array,0),'\0',capacity * CELLS);
|
|
else
|
|
{
|
|
/* No need for write barrier here. Either the object is in
|
|
the nursery, or it was allocated directly in tenured space
|
|
and the write barrier is already hit for us in that case. */
|
|
for(i = 0; i < capacity; i++)
|
|
put(AREF(array,i),fill);
|
|
}
|
|
return array;
|
|
}
|
|
|
|
/* push a new array on the stack */
|
|
DEFINE_PRIMITIVE(array)
|
|
{
|
|
CELL initial = dpop();
|
|
CELL size = unbox_array_size();
|
|
dpush(tag_object(allot_array(ARRAY_TYPE,size,initial)));
|
|
}
|
|
|
|
CELL allot_array_1(CELL obj)
|
|
{
|
|
REGISTER_ROOT(obj);
|
|
F_ARRAY *a = allot_array_internal(ARRAY_TYPE,1);
|
|
UNREGISTER_ROOT(obj);
|
|
set_array_nth(a,0,obj);
|
|
return tag_object(a);
|
|
}
|
|
|
|
CELL allot_array_2(CELL v1, CELL v2)
|
|
{
|
|
REGISTER_ROOT(v1);
|
|
REGISTER_ROOT(v2);
|
|
F_ARRAY *a = allot_array_internal(ARRAY_TYPE,2);
|
|
UNREGISTER_ROOT(v2);
|
|
UNREGISTER_ROOT(v1);
|
|
set_array_nth(a,0,v1);
|
|
set_array_nth(a,1,v2);
|
|
return tag_object(a);
|
|
}
|
|
|
|
CELL allot_array_4(CELL v1, CELL v2, CELL v3, CELL v4)
|
|
{
|
|
REGISTER_ROOT(v1);
|
|
REGISTER_ROOT(v2);
|
|
REGISTER_ROOT(v3);
|
|
REGISTER_ROOT(v4);
|
|
F_ARRAY *a = allot_array_internal(ARRAY_TYPE,4);
|
|
UNREGISTER_ROOT(v4);
|
|
UNREGISTER_ROOT(v3);
|
|
UNREGISTER_ROOT(v2);
|
|
UNREGISTER_ROOT(v1);
|
|
set_array_nth(a,0,v1);
|
|
set_array_nth(a,1,v2);
|
|
set_array_nth(a,2,v3);
|
|
set_array_nth(a,3,v4);
|
|
return tag_object(a);
|
|
}
|
|
|
|
F_ARRAY *reallot_array(F_ARRAY* array, CELL capacity, CELL fill)
|
|
{
|
|
int i;
|
|
F_ARRAY* new_array;
|
|
|
|
CELL to_copy = array_capacity(array);
|
|
if(capacity < to_copy)
|
|
to_copy = capacity;
|
|
|
|
REGISTER_UNTAGGED(array);
|
|
REGISTER_ROOT(fill);
|
|
|
|
new_array = allot_array_internal(untag_header(array->header),capacity);
|
|
|
|
UNREGISTER_ROOT(fill);
|
|
UNREGISTER_UNTAGGED(array);
|
|
|
|
memcpy(new_array + 1,array + 1,to_copy * CELLS);
|
|
|
|
for(i = to_copy; i < capacity; i++)
|
|
put(AREF(new_array,i),fill);
|
|
|
|
return new_array;
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(resize_array)
|
|
{
|
|
F_ARRAY* array = untag_array(dpop());
|
|
CELL capacity = unbox_array_size();
|
|
dpush(tag_object(reallot_array(array,capacity,F)));
|
|
}
|
|
|
|
F_ARRAY *growable_array_add(F_ARRAY *result, CELL elt, CELL *result_count)
|
|
{
|
|
REGISTER_ROOT(elt);
|
|
|
|
if(*result_count == array_capacity(result))
|
|
{
|
|
result = reallot_array(result,
|
|
*result_count * 2,F);
|
|
}
|
|
|
|
UNREGISTER_ROOT(elt);
|
|
set_array_nth(result,*result_count,elt);
|
|
(*result_count)++;
|
|
|
|
return result;
|
|
}
|
|
|
|
F_ARRAY *growable_array_append(F_ARRAY *result, F_ARRAY *elts, CELL *result_count)
|
|
{
|
|
REGISTER_UNTAGGED(elts);
|
|
|
|
CELL elts_size = array_capacity(elts);
|
|
CELL new_size = *result_count + elts_size;
|
|
|
|
if(new_size >= array_capacity(result))
|
|
result = reallot_array(result,new_size * 2,F);
|
|
|
|
UNREGISTER_UNTAGGED(elts);
|
|
|
|
write_barrier((CELL)result);
|
|
|
|
memcpy((void *)AREF(result,*result_count),(void *)AREF(elts,0),elts_size * CELLS);
|
|
|
|
*result_count += elts_size;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Byte arrays */
|
|
|
|
/* must fill out array before next GC */
|
|
F_BYTE_ARRAY *allot_byte_array_internal(CELL size)
|
|
{
|
|
F_BYTE_ARRAY *array = allot_object(BYTE_ARRAY_TYPE,
|
|
byte_array_size(size));
|
|
array->capacity = tag_fixnum(size);
|
|
return array;
|
|
}
|
|
|
|
/* size is in bytes this time */
|
|
F_BYTE_ARRAY *allot_byte_array(CELL size)
|
|
{
|
|
F_BYTE_ARRAY *array = allot_byte_array_internal(size);
|
|
memset(array + 1,0,size);
|
|
return array;
|
|
}
|
|
|
|
/* push a new byte array on the stack */
|
|
DEFINE_PRIMITIVE(byte_array)
|
|
{
|
|
CELL size = unbox_array_size();
|
|
dpush(tag_object(allot_byte_array(size)));
|
|
}
|
|
|
|
F_BYTE_ARRAY *reallot_byte_array(F_BYTE_ARRAY *array, CELL capacity)
|
|
{
|
|
CELL to_copy = array_capacity(array);
|
|
if(capacity < to_copy)
|
|
to_copy = capacity;
|
|
|
|
REGISTER_UNTAGGED(array);
|
|
F_BYTE_ARRAY *new_array = allot_byte_array(capacity);
|
|
UNREGISTER_UNTAGGED(array);
|
|
|
|
memcpy(new_array + 1,array + 1,to_copy);
|
|
|
|
return new_array;
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(resize_byte_array)
|
|
{
|
|
F_BYTE_ARRAY* array = untag_byte_array(dpop());
|
|
CELL capacity = unbox_array_size();
|
|
dpush(tag_object(reallot_byte_array(array,capacity)));
|
|
}
|
|
|
|
F_BYTE_ARRAY *growable_byte_array_add(F_BYTE_ARRAY *result, CELL elt, CELL *result_count)
|
|
{
|
|
if(*result_count == byte_array_capacity(result))
|
|
{
|
|
result = reallot_byte_array(result,*result_count * 2);
|
|
}
|
|
|
|
bput(BREF(result,*result_count),elt);
|
|
*result_count++;
|
|
|
|
return result;
|
|
}
|
|
|
|
F_BYTE_ARRAY *growable_byte_array_append(F_BYTE_ARRAY *result, void *elts, CELL len, CELL *result_count)
|
|
{
|
|
CELL new_size = *result_count + len;
|
|
|
|
if(new_size >= byte_array_capacity(result))
|
|
result = reallot_byte_array(result,new_size * 2);
|
|
|
|
memcpy((void *)BREF(result,*result_count),elts,len);
|
|
|
|
*result_count = new_size;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Bit arrays */
|
|
|
|
/* size is in bits */
|
|
|
|
F_BIT_ARRAY *allot_bit_array_internal(CELL size)
|
|
{
|
|
F_BIT_ARRAY *array = allot_object(BIT_ARRAY_TYPE,bit_array_size(size));
|
|
array->capacity = tag_fixnum(size);
|
|
return array;
|
|
}
|
|
|
|
F_BIT_ARRAY *allot_bit_array(CELL size)
|
|
{
|
|
F_BIT_ARRAY *array = allot_bit_array_internal(size);
|
|
memset(array + 1,0,bit_array_size(size));
|
|
return array;
|
|
}
|
|
|
|
/* push a new bit array on the stack */
|
|
DEFINE_PRIMITIVE(bit_array)
|
|
{
|
|
CELL size = unbox_array_size();
|
|
dpush(tag_object(allot_bit_array(size)));
|
|
}
|
|
|
|
F_BIT_ARRAY *reallot_bit_array(F_BIT_ARRAY *array, CELL capacity)
|
|
{
|
|
CELL to_copy = array_capacity(array);
|
|
if(capacity < to_copy)
|
|
to_copy = capacity;
|
|
|
|
REGISTER_UNTAGGED(array);
|
|
F_BIT_ARRAY *new_array = allot_bit_array(capacity);
|
|
UNREGISTER_UNTAGGED(array);
|
|
|
|
memcpy(new_array + 1,array + 1,bit_array_size(to_copy));
|
|
|
|
return new_array;
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(resize_bit_array)
|
|
{
|
|
F_BYTE_ARRAY* array = untag_bit_array(dpop());
|
|
CELL capacity = unbox_array_size();
|
|
dpush(tag_object(reallot_bit_array(array,capacity)));
|
|
}
|
|
|
|
/* Float arrays */
|
|
|
|
/* size is in 8-byte doubles */
|
|
F_FLOAT_ARRAY *allot_float_array_internal(CELL size)
|
|
{
|
|
F_FLOAT_ARRAY *array = allot_object(FLOAT_ARRAY_TYPE,
|
|
float_array_size(size));
|
|
array->capacity = tag_fixnum(size);
|
|
return array;
|
|
}
|
|
|
|
F_FLOAT_ARRAY *allot_float_array(CELL size, double initial)
|
|
{
|
|
F_FLOAT_ARRAY *array = allot_float_array_internal(size);
|
|
|
|
double *elements = (double *)AREF(array,0);
|
|
int i;
|
|
for(i = 0; i < size; i++)
|
|
elements[i] = initial;
|
|
|
|
return array;
|
|
}
|
|
|
|
/* push a new float array on the stack */
|
|
DEFINE_PRIMITIVE(float_array)
|
|
{
|
|
double initial = untag_float(dpop());
|
|
CELL size = unbox_array_size();
|
|
dpush(tag_object(allot_float_array(size,initial)));
|
|
}
|
|
|
|
F_ARRAY *reallot_float_array(F_FLOAT_ARRAY* array, CELL capacity)
|
|
{
|
|
F_FLOAT_ARRAY* new_array;
|
|
|
|
CELL to_copy = array_capacity(array);
|
|
if(capacity < to_copy)
|
|
to_copy = capacity;
|
|
|
|
REGISTER_UNTAGGED(array);
|
|
new_array = allot_float_array(capacity,0.0);
|
|
UNREGISTER_UNTAGGED(array);
|
|
|
|
memcpy(new_array + 1,array + 1,to_copy * sizeof(double));
|
|
|
|
return new_array;
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(resize_float_array)
|
|
{
|
|
F_FLOAT_ARRAY* array = untag_float_array(dpop());
|
|
CELL capacity = unbox_array_size();
|
|
dpush(tag_object(reallot_float_array(array,capacity)));
|
|
}
|
|
|
|
/* Tuple layouts */
|
|
DEFINE_PRIMITIVE(tuple_layout)
|
|
{
|
|
F_TUPLE_LAYOUT *layout = allot_object(TUPLE_LAYOUT_TYPE,sizeof(F_TUPLE_LAYOUT));
|
|
layout->echelon = dpop();
|
|
layout->superclasses = dpop();
|
|
layout->size = dpop();
|
|
layout->class = dpop();
|
|
layout->hashcode = untag_word(layout->class)->hashcode;
|
|
dpush(tag_object(layout));
|
|
}
|
|
|
|
/* Tuples */
|
|
|
|
/* push a new tuple on the stack */
|
|
F_TUPLE *allot_tuple(F_TUPLE_LAYOUT *layout)
|
|
{
|
|
REGISTER_UNTAGGED(layout);
|
|
F_TUPLE *tuple = allot_object(TUPLE_TYPE,tuple_size(layout));
|
|
UNREGISTER_UNTAGGED(layout);
|
|
tuple->layout = tag_object(layout);
|
|
return tuple;
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(tuple)
|
|
{
|
|
F_TUPLE_LAYOUT *layout = untag_object(dpop());
|
|
F_FIXNUM size = to_fixnum(layout->size);
|
|
|
|
F_TUPLE *tuple = allot_tuple(layout);
|
|
F_FIXNUM i;
|
|
for(i = size - 1; i >= 0; i--)
|
|
put(AREF(tuple,i),F);
|
|
|
|
dpush(tag_tuple(tuple));
|
|
}
|
|
|
|
/* push a new tuple on the stack, filling its slots from the stack */
|
|
DEFINE_PRIMITIVE(tuple_boa)
|
|
{
|
|
F_TUPLE_LAYOUT *layout = untag_object(dpop());
|
|
F_FIXNUM size = to_fixnum(layout->size);
|
|
|
|
REGISTER_UNTAGGED(layout);
|
|
F_TUPLE *tuple = allot_tuple(layout);
|
|
UNREGISTER_UNTAGGED(layout);
|
|
|
|
/* set delegate slot */
|
|
put(AREF(tuple,0),F);
|
|
|
|
F_FIXNUM i;
|
|
for(i = size - 1; i >= 1; i--)
|
|
put(AREF(tuple,i),dpop());
|
|
|
|
dpush(tag_tuple(tuple));
|
|
}
|
|
|
|
/* Strings */
|
|
CELL string_nth(F_STRING* string, CELL index)
|
|
{
|
|
CELL ch = bget(SREF(string,index));
|
|
if(string->aux == F)
|
|
return ch;
|
|
else
|
|
{
|
|
F_BYTE_ARRAY *aux = untag_object(string->aux);
|
|
return (cget(BREF(aux,index * sizeof(u16))) << 8) | ch;
|
|
}
|
|
}
|
|
|
|
/* allocates memory */
|
|
void set_string_nth(F_STRING* string, CELL index, CELL value)
|
|
{
|
|
bput(SREF(string,index),value & 0xff);
|
|
|
|
F_BYTE_ARRAY *aux;
|
|
|
|
if(string->aux == F)
|
|
{
|
|
if(value <= 0xff)
|
|
return;
|
|
else
|
|
{
|
|
REGISTER_UNTAGGED(string);
|
|
aux = allot_byte_array(
|
|
untag_fixnum_fast(string->length)
|
|
* sizeof(u16));
|
|
UNREGISTER_UNTAGGED(string);
|
|
|
|
write_barrier((CELL)string);
|
|
string->aux = tag_object(aux);
|
|
}
|
|
}
|
|
else
|
|
aux = untag_object(string->aux);
|
|
|
|
cput(BREF(aux,index * sizeof(u16)),value >> 8);
|
|
}
|
|
|
|
/* untagged */
|
|
F_STRING* allot_string_internal(CELL capacity)
|
|
{
|
|
F_STRING *string = allot_object(STRING_TYPE,string_size(capacity));
|
|
|
|
string->length = tag_fixnum(capacity);
|
|
string->hashcode = F;
|
|
string->aux = F;
|
|
|
|
return string;
|
|
}
|
|
|
|
/* allocates memory */
|
|
void fill_string(F_STRING *string, CELL start, CELL capacity, CELL fill)
|
|
{
|
|
if(fill == 0)
|
|
{
|
|
memset((void *)SREF(string,start),'\0',capacity - start);
|
|
|
|
if(string->aux != F)
|
|
{
|
|
F_BYTE_ARRAY *aux = untag_object(string->aux);
|
|
memset((void *)BREF(aux,start * sizeof(u16)),'\0',
|
|
(capacity - start) * sizeof(u16));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CELL i;
|
|
|
|
for(i = start; i < capacity; i++)
|
|
{
|
|
REGISTER_UNTAGGED(string);
|
|
set_string_nth(string,i,fill);
|
|
UNREGISTER_UNTAGGED(string);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* untagged */
|
|
F_STRING *allot_string(CELL capacity, CELL fill)
|
|
{
|
|
F_STRING* string = allot_string_internal(capacity);
|
|
REGISTER_UNTAGGED(string);
|
|
fill_string(string,0,capacity,fill);
|
|
UNREGISTER_UNTAGGED(string);
|
|
return string;
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(string)
|
|
{
|
|
CELL initial = to_cell(dpop());
|
|
CELL length = unbox_array_size();
|
|
dpush(tag_object(allot_string(length,initial)));
|
|
}
|
|
|
|
F_STRING* reallot_string(F_STRING* string, CELL capacity, CELL fill)
|
|
{
|
|
CELL to_copy = string_capacity(string);
|
|
if(capacity < to_copy)
|
|
to_copy = capacity;
|
|
|
|
REGISTER_UNTAGGED(string);
|
|
F_STRING *new_string = allot_string_internal(capacity);
|
|
UNREGISTER_UNTAGGED(string);
|
|
|
|
memcpy(new_string + 1,string + 1,to_copy);
|
|
|
|
if(string->aux != F)
|
|
{
|
|
REGISTER_UNTAGGED(string);
|
|
REGISTER_UNTAGGED(new_string);
|
|
F_BYTE_ARRAY *new_aux = allot_byte_array(capacity * sizeof(u16));
|
|
UNREGISTER_UNTAGGED(new_string);
|
|
UNREGISTER_UNTAGGED(string);
|
|
|
|
new_string->aux = tag_object(new_aux);
|
|
|
|
F_BYTE_ARRAY *aux = untag_object(string->aux);
|
|
memcpy(new_aux + 1,aux + 1,to_copy * sizeof(u16));
|
|
}
|
|
|
|
REGISTER_UNTAGGED(string);
|
|
fill_string(new_string,to_copy,capacity,fill);
|
|
UNREGISTER_UNTAGGED(string);
|
|
|
|
return new_string;
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(resize_string)
|
|
{
|
|
F_STRING* string = untag_string(dpop());
|
|
CELL capacity = unbox_array_size();
|
|
dpush(tag_object(reallot_string(string,capacity,0)));
|
|
}
|
|
|
|
/* Some ugly macros to prevent a 2x code duplication */
|
|
|
|
#define MEMORY_TO_STRING(type,utype) \
|
|
F_STRING *memory_to_##type##_string(const type *string, CELL length) \
|
|
{ \
|
|
REGISTER_C_STRING(string); \
|
|
F_STRING* s = allot_string_internal(length); \
|
|
UNREGISTER_C_STRING(string); \
|
|
CELL i; \
|
|
for(i = 0; i < length; i++) \
|
|
{ \
|
|
REGISTER_UNTAGGED(s); \
|
|
set_string_nth(s,i,(utype)*string); \
|
|
UNREGISTER_UNTAGGED(s); \
|
|
string++; \
|
|
} \
|
|
return s; \
|
|
} \
|
|
F_STRING *from_##type##_string(const type *str) \
|
|
{ \
|
|
CELL length = 0; \
|
|
const type *scan = str; \
|
|
while(*scan++) length++; \
|
|
return memory_to_##type##_string(str,length); \
|
|
} \
|
|
void box_##type##_string(const type *str) \
|
|
{ \
|
|
dpush(str ? tag_object(from_##type##_string(str)) : F); \
|
|
}
|
|
|
|
MEMORY_TO_STRING(char,u8)
|
|
MEMORY_TO_STRING(u16,u16)
|
|
MEMORY_TO_STRING(u32,u32)
|
|
|
|
bool check_string(F_STRING *s, CELL max)
|
|
{
|
|
CELL capacity = string_capacity(s);
|
|
CELL i;
|
|
for(i = 0; i < capacity; i++)
|
|
{
|
|
CELL ch = string_nth(s,i);
|
|
if(ch == '\0' || ch >= (1 << (max * 8)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
F_BYTE_ARRAY *allot_c_string(CELL capacity, CELL size)
|
|
{
|
|
return allot_byte_array((capacity + 1) * size);
|
|
}
|
|
|
|
#define STRING_TO_MEMORY(type) \
|
|
void type##_string_to_memory(F_STRING *s, type *string) \
|
|
{ \
|
|
CELL i; \
|
|
CELL capacity = string_capacity(s); \
|
|
for(i = 0; i < capacity; i++) \
|
|
string[i] = string_nth(s,i); \
|
|
} \
|
|
DEFINE_PRIMITIVE(type##_string_to_memory) \
|
|
{ \
|
|
type *address = unbox_alien(); \
|
|
F_STRING *str = untag_string(dpop()); \
|
|
type##_string_to_memory(str,address); \
|
|
} \
|
|
F_BYTE_ARRAY *string_to_##type##_alien(F_STRING *s, bool check) \
|
|
{ \
|
|
CELL capacity = string_capacity(s); \
|
|
F_BYTE_ARRAY *_c_str; \
|
|
if(check && !check_string(s,sizeof(type))) \
|
|
general_error(ERROR_C_STRING,tag_object(s),F,NULL); \
|
|
REGISTER_UNTAGGED(s); \
|
|
_c_str = allot_c_string(capacity,sizeof(type)); \
|
|
UNREGISTER_UNTAGGED(s); \
|
|
type *c_str = (type*)(_c_str + 1); \
|
|
type##_string_to_memory(s,c_str); \
|
|
c_str[capacity] = 0; \
|
|
return _c_str; \
|
|
} \
|
|
type *to_##type##_string(F_STRING *s, bool check) \
|
|
{ \
|
|
return (type*)(string_to_##type##_alien(s,check) + 1); \
|
|
} \
|
|
type *unbox_##type##_string(void) \
|
|
{ \
|
|
return to_##type##_string(untag_string(dpop()),true); \
|
|
}
|
|
|
|
STRING_TO_MEMORY(char);
|
|
STRING_TO_MEMORY(u16);
|
|
|
|
DEFINE_PRIMITIVE(string_nth)
|
|
{
|
|
F_STRING *string = untag_object(dpop());
|
|
CELL index = untag_fixnum_fast(dpop());
|
|
dpush(tag_fixnum(string_nth(string,index)));
|
|
}
|
|
|
|
DEFINE_PRIMITIVE(set_string_nth)
|
|
{
|
|
F_STRING *string = untag_object(dpop());
|
|
CELL index = untag_fixnum_fast(dpop());
|
|
CELL value = untag_fixnum_fast(dpop());
|
|
set_string_nth(string,index,value);
|
|
}
|