factor/basis/compiler/cfg/ssa/liveness/liveness.factor

158 lines
3.8 KiB
Factor

! Copyright (C) 2009 Daniel Ehrenberg
! See http://factorcode.org/license.txt for BSD license.
USING: kernel sequences assocs accessors
namespaces fry math sets combinators locals
compiler.cfg.rpo
compiler.cfg.dominance
compiler.cfg.def-use
compiler.cfg.instructions ;
IN: compiler.cfg.ssa.liveness
! Liveness checking on SSA IR, as described in
! "Fast Liveness Checking for SSA-Form Programs", Sebastian Hack et al.
! http://hal.archives-ouvertes.fr/docs/00/19/22/19/PDF/fast_liveness.pdf
<PRIVATE
! The sets T_q and R_q are described there
SYMBOL: T_q-sets
SYMBOL: R_q-sets
! Targets of back edges
SYMBOL: back-edge-targets
! hashtable of nodes => sets of vregs, where the vregs are inputs
! to phi nodes in a successor node
SYMBOL: phi-outs
: T_q ( q -- T_q )
T_q-sets get at ;
: R_q ( q -- R_q )
R_q-sets get at ;
: back-edge-target? ( block -- ? )
back-edge-targets get key? ;
: phi-out? ( vreg node -- ? )
phi-outs get at key? ;
: next-R_q ( q -- R_q )
[ ] [ successors>> ] [ number>> ] tri
'[ number>> _ >= ] filter
[ R_q ] map assoc-combine
[ conjoin ] keep ;
: set-R_q ( q -- )
[ next-R_q ] keep R_q-sets get set-at ;
: set-back-edges ( q -- )
[ successors>> ] [ number>> ] bi '[
dup number>> _ <
[ back-edge-targets get conjoin ] [ drop ] if
] each ;
: set-phi-out ( block vreg -- )
swap phi-outs get [ drop H{ } clone ] cache conjoin ;
: set-phi-outs ( q -- )
instructions>> [
dup ##phi? [
inputs>> [ set-phi-out ] assoc-each
] [ drop ] if
] each ;
: init-R_q ( -- )
H{ } clone R_q-sets set
H{ } clone back-edge-targets set
H{ } clone phi-outs set ;
: compute-R_q ( cfg -- )
init-R_q
post-order [
[ set-R_q ]
[ set-back-edges ]
[ set-phi-outs ] tri
] each ;
! This algorithm for computing T_q uses equation (1)
! but not the faster algorithm described in the paper
: back-edges-from ( q -- edges )
R_q keys [
[ successors>> ] [ number>> ] bi
'[ number>> _ < ] filter
] gather ;
: T^_q ( q -- T^_q )
[ back-edges-from ] [ R_q ] bi
'[ _ key? not ] filter ;
: next-T_q ( q -- T_q )
dup dup T^_q [ next-T_q keys ] map
concat unique [ conjoin ] keep
[ swap T_q-sets get set-at ] keep ;
: compute-T_q ( cfg -- )
H{ } T_q-sets set
[ next-T_q drop ] each-basic-block ;
PRIVATE>
: precompute-liveness ( cfg -- )
! Maybe dominance and def-use should be called before this, separately
{
[ compute-dominance ]
[ compute-def-use ]
[ compute-R_q ]
[ compute-T_q ]
} cleave ;
<PRIVATE
! This doesn't take advantage of ordering T_q,a so you
! only have to check one if the CFG is reducible.
! It should be changed to be more efficient.
: only? ( seq obj -- ? )
'[ _ eq? ] all? ;
: strictly-dominates? ( bb1 bb2 -- ? )
[ dominates? ] [ eq? not ] 2bi and ;
: T_q,a ( a q -- T_q,a )
! This could take advantage of the structure of dominance,
! but probably I'll replace it with the algorithm that works
! on reducible CFGs anyway
T_q keys swap def-of
[ '[ _ swap strictly-dominates? ] filter ] when* ;
: live? ( vreg node quot -- ? )
[ [ T_q,a ] [ drop uses-of ] 2bi ] dip
'[ [ R_q keys _ ] keep @ intersects? ] any? ; inline
PRIVATE>
: live-in? ( vreg node -- ? )
[ drop ] live? ;
<PRIVATE
: (live-out?) ( vreg node -- ? )
dup dup dup '[
_ = _ back-edge-target? not and
[ _ swap remove ] when
] live? ;
PRIVATE>
:: live-out? ( vreg node -- ? )
[let | def [ vreg def-of ] |
{
{ [ node def eq? ] [ vreg uses-of def only? not ] }
{ [ vreg node phi-out? ] [ t ] }
{ [ def node strictly-dominates? ] [ vreg node (live-out?) ] }
[ f ]
} cond
] ;