factor/vm/factor.cpp

349 lines
8.2 KiB
C++
Executable File

#include "master.hpp"
namespace factor
{
factorvm *vm;
void init_globals()
{
init_platform_globals();
}
void factorvm::default_parameters(vm_parameters *p)
{
p->image_path = NULL;
/* We make a wild guess here that if we're running on ARM, we don't
have a lot of memory. */
#ifdef FACTOR_ARM
p->ds_size = 8 * sizeof(cell);
p->rs_size = 8 * sizeof(cell);
p->gen_count = 2;
p->code_size = 4;
p->young_size = 1;
p->aging_size = 1;
p->tenured_size = 6;
#else
p->ds_size = 32 * sizeof(cell);
p->rs_size = 32 * sizeof(cell);
p->gen_count = 3;
p->code_size = 8 * sizeof(cell);
p->young_size = sizeof(cell) / 4;
p->aging_size = sizeof(cell) / 2;
p->tenured_size = 4 * sizeof(cell);
#endif
p->max_pic_size = 3;
p->secure_gc = false;
p->fep = false;
#ifdef WINDOWS
p->console = false;
#else
if (this == vm)
p->console = true;
else
p->console = false;
#endif
p->stack_traces = true;
}
bool factorvm::factor_arg(const vm_char* str, const vm_char* arg, cell* value)
{
int val;
if(SSCANF(str,arg,&val) > 0)
{
*value = val;
return true;
}
else
return false;
}
void factorvm::init_parameters_from_args(vm_parameters *p, int argc, vm_char **argv)
{
default_parameters(p);
p->executable_path = argv[0];
int i = 0;
for(i = 1; i < argc; i++)
{
if(factor_arg(argv[i],STRING_LITERAL("-datastack=%d"),&p->ds_size));
else if(factor_arg(argv[i],STRING_LITERAL("-retainstack=%d"),&p->rs_size));
else if(factor_arg(argv[i],STRING_LITERAL("-generations=%d"),&p->gen_count));
else if(factor_arg(argv[i],STRING_LITERAL("-young=%d"),&p->young_size));
else if(factor_arg(argv[i],STRING_LITERAL("-aging=%d"),&p->aging_size));
else if(factor_arg(argv[i],STRING_LITERAL("-tenured=%d"),&p->tenured_size));
else if(factor_arg(argv[i],STRING_LITERAL("-codeheap=%d"),&p->code_size));
else if(factor_arg(argv[i],STRING_LITERAL("-pic=%d"),&p->max_pic_size));
else if(STRCMP(argv[i],STRING_LITERAL("-securegc")) == 0) p->secure_gc = true;
else if(STRCMP(argv[i],STRING_LITERAL("-fep")) == 0) p->fep = true;
else if(STRNCMP(argv[i],STRING_LITERAL("-i="),3) == 0) p->image_path = argv[i] + 3;
else if(STRCMP(argv[i],STRING_LITERAL("-console")) == 0) p->console = true;
else if(STRCMP(argv[i],STRING_LITERAL("-no-stack-traces")) == 0) p->stack_traces = false;
}
}
/* Do some initialization that we do once only */
void factorvm::do_stage1_init()
{
print_string("*** Stage 2 early init... ");
fflush(stdout);
compile_all_words();
userenv[STAGE2_ENV] = T;
print_string("done\n");
fflush(stdout);
}
void factorvm::init_factor(vm_parameters *p)
{
/* Kilobytes */
p->ds_size = align_page(p->ds_size << 10);
p->rs_size = align_page(p->rs_size << 10);
/* Megabytes */
p->young_size <<= 20;
p->aging_size <<= 20;
p->tenured_size <<= 20;
p->code_size <<= 20;
/* Disable GC during init as a sanity check */
gc_off = true;
/* OS-specific initialization */
early_init();
const vm_char *executable_path = vm_executable_path();
if(executable_path)
p->executable_path = executable_path;
if(p->image_path == NULL)
p->image_path = default_image_path();
srand(current_micros());
init_ffi();
init_stacks(p->ds_size,p->rs_size);
load_image(p);
init_c_io();
init_inline_caching(p->max_pic_size);
init_signals();
if(p->console)
open_console();
init_profiler();
userenv[CPU_ENV] = allot_alien(F,(cell)FACTOR_CPU_STRING);
userenv[OS_ENV] = allot_alien(F,(cell)FACTOR_OS_STRING);
userenv[CELL_SIZE_ENV] = tag_fixnum(sizeof(cell));
userenv[EXECUTABLE_ENV] = allot_alien(F,(cell)p->executable_path);
userenv[ARGS_ENV] = F;
userenv[EMBEDDED_ENV] = F;
/* We can GC now */
gc_off = false;
if(userenv[STAGE2_ENV] == F)
{
userenv[STACK_TRACES_ENV] = tag_boolean(p->stack_traces);
do_stage1_init();
}
}
/* May allocate memory */
void factorvm::pass_args_to_factor(int argc, vm_char **argv)
{
growable_array args(this);
int i;
for(i = 1; i < argc; i++){
args.add(allot_alien(F,(cell)argv[i]));
}
args.trim();
userenv[ARGS_ENV] = args.elements.value();
}
void factorvm::start_factor(vm_parameters *p)
{
if(p->fep) factorbug();
nest_stacks();
c_to_factor_toplevel(userenv[BOOT_ENV]);
unnest_stacks();
}
char *factorvm::factor_eval_string(char *string)
{
char *(*callback)(char *) = (char *(*)(char *))alien_offset(userenv[EVAL_CALLBACK_ENV]);
return callback(string);
}
void factorvm::factor_eval_free(char *result)
{
free(result);
}
void factorvm::factor_yield()
{
void (*callback)() = (void (*)())alien_offset(userenv[YIELD_CALLBACK_ENV]);
callback();
}
void factorvm::factor_sleep(long us)
{
void (*callback)(long) = (void (*)(long))alien_offset(userenv[SLEEP_CALLBACK_ENV]);
callback(us);
}
void factorvm::start_standalone_factor(int argc, vm_char **argv)
{
vm_parameters p;
default_parameters(&p);
init_parameters_from_args(&p,argc,argv);
init_factor(&p);
pass_args_to_factor(argc,argv);
start_factor(&p);
}
struct startargs {
int argc;
vm_char **argv;
};
void* start_standalone_factor_thread(void *arg)
{
factorvm *newvm = new factorvm;
register_vm_with_thread(newvm);
startargs *args = (startargs*) arg;
newvm->start_standalone_factor(args->argc, args->argv);
return 0;
}
VM_C_API void start_standalone_factor(int argc, vm_char **argv)
{
factorvm *newvm = new factorvm;
vm = newvm;
register_vm_with_thread(newvm);
return newvm->start_standalone_factor(argc,argv);
}
VM_C_API THREADHANDLE start_standalone_factor_in_new_thread(int argc, vm_char **argv)
{
startargs *args = new startargs; // leaks startargs structure
args->argc = argc; args->argv = argv;
return start_thread(start_standalone_factor_thread,args);
}
// if you change this struct, also change vm.factor k--------
context *stack_chain;
zone nursery; /* new objects are allocated here */
cell cards_offset;
cell decks_offset;
cell userenv[USER_ENV]; /* TAGGED user environment data; see getenv/setenv prims */
// -------------------------------
// contexts
cell ds_size, rs_size;
context *unused_contexts;
// run
cell T; /* Canonical T object. It's just a word */
// profiler
bool profiling_p;
// errors
/* Global variables used to pass fault handler state from signal handler to
user-space */
cell signal_number;
cell signal_fault_addr;
unsigned int signal_fpu_status;
stack_frame *signal_callstack_top;
//data_heap
bool secure_gc; /* Set by the -securegc command line argument */
bool gc_off; /* GC is off during heap walking */
data_heap *data;
/* A heap walk allows useful things to be done, like finding all
references to an object for debugging purposes. */
cell heap_scan_ptr;
//write barrier
cell allot_markers_offset;
//data_gc
/* used during garbage collection only */
zone *newspace;
bool performing_gc;
bool performing_compaction;
cell collecting_gen;
/* if true, we are collecting aging space for the second time, so if it is still
full, we go on to collect tenured */
bool collecting_aging_again;
/* in case a generation fills up in the middle of a gc, we jump back
up to try collecting the next generation. */
jmp_buf gc_jmp;
gc_stats stats[max_gen_count];
u64 cards_scanned;
u64 decks_scanned;
u64 card_scan_time;
cell code_heap_scans;
/* What generation was being collected when copy_code_heap_roots() was last
called? Until the next call to add_code_block(), future
collections of younger generations don't have to touch the code
heap. */
cell last_code_heap_scan;
/* sometimes we grow the heap */
bool growing_data_heap;
data_heap *old_data_heap;
// local roots
/* If a runtime function needs to call another function which potentially
allocates memory, it must wrap any local variable references to Factor
objects in gc_root instances */
std::vector<cell> gc_locals;
std::vector<cell> gc_bignums;
//debug
bool fep_disabled;
bool full_output;
cell look_for;
cell obj;
//math
cell bignum_zero;
cell bignum_pos_one;
cell bignum_neg_one;
//code_heap
heap code;
unordered_map<heap_block *,char *> forwarding;
//image
cell code_relocation_base;
cell data_relocation_base;
//dispatch
cell megamorphic_cache_hits;
cell megamorphic_cache_misses;
//inline cache
cell max_pic_size;
cell cold_call_to_ic_transitions;
cell ic_to_pic_transitions;
cell pic_to_mega_transitions;
cell pic_counts[4]; /* PIC_TAG, PIC_HI_TAG, PIC_TUPLE, PIC_HI_TAG_TUPLE */
}