factor/vm/run.c

227 lines
4.7 KiB
C
Executable File

#include "master.h"
void reset_datastack(void)
{
ds = ds_bot - CELLS;
}
void reset_retainstack(void)
{
rs = rs_bot - CELLS;
}
#define RESERVED (64 * CELLS)
void fix_stacks(void)
{
if(ds + CELLS < ds_bot || ds + RESERVED >= ds_top) reset_datastack();
if(rs + CELLS < rs_bot || rs + RESERVED >= rs_top) reset_retainstack();
}
/* called before entry into foreign C code. Note that ds and rs might
be stored in registers, so callbacks must save and restore the correct values */
void save_stacks(void)
{
if(stack_chain)
{
stack_chain->datastack = ds;
stack_chain->retainstack = rs;
}
}
F_CONTEXT *alloc_context(void)
{
F_CONTEXT *context;
if(unused_contexts)
{
context = unused_contexts;
unused_contexts = unused_contexts->next;
}
else
{
context = safe_malloc(sizeof(F_CONTEXT));
context->datastack_region = alloc_segment(ds_size);
context->retainstack_region = alloc_segment(rs_size);
}
return context;
}
void dealloc_context(F_CONTEXT *context)
{
context->next = unused_contexts;
unused_contexts = context;
}
/* called on entry into a compiled callback */
void nest_stacks(void)
{
F_CONTEXT *new_stacks = alloc_context();
new_stacks->callstack_bottom = (F_STACK_FRAME *)-1;
new_stacks->callstack_top = (F_STACK_FRAME *)-1;
/* note that these register values are not necessarily valid stack
pointers. they are merely saved non-volatile registers, and are
restored in unnest_stacks(). consider this scenario:
- factor code calls C function
- C function saves ds/cs registers (since they're non-volatile)
- C function clobbers them
- C function calls Factor callback
- Factor callback returns
- C function restores registers
- C function returns to Factor code */
new_stacks->datastack_save = ds;
new_stacks->retainstack_save = rs;
/* save per-callback userenv */
new_stacks->current_callback_save = userenv[CURRENT_CALLBACK_ENV];
new_stacks->catchstack_save = userenv[CATCHSTACK_ENV];
new_stacks->next = stack_chain;
stack_chain = new_stacks;
reset_datastack();
reset_retainstack();
}
/* called when leaving a compiled callback */
void unnest_stacks(void)
{
ds = stack_chain->datastack_save;
rs = stack_chain->retainstack_save;
/* restore per-callback userenv */
userenv[CURRENT_CALLBACK_ENV] = stack_chain->current_callback_save;
userenv[CATCHSTACK_ENV] = stack_chain->catchstack_save;
F_CONTEXT *old_stacks = stack_chain;
stack_chain = old_stacks->next;
dealloc_context(old_stacks);
}
/* called on startup */
void init_stacks(CELL ds_size_, CELL rs_size_)
{
ds_size = ds_size_;
rs_size = rs_size_;
stack_chain = NULL;
unused_contexts = NULL;
}
bool stack_to_array(CELL bottom, CELL top)
{
F_FIXNUM depth = (F_FIXNUM)(top - bottom + CELLS);
if(depth < 0)
return false;
else
{
F_ARRAY *a = allot_array_internal(ARRAY_TYPE,depth / CELLS);
memcpy(a + 1,(void*)bottom,depth);
dpush(tag_object(a));
return true;
}
}
void primitive_datastack(void)
{
if(!stack_to_array(ds_bot,ds))
general_error(ERROR_DS_UNDERFLOW,F,F,NULL);
}
void primitive_retainstack(void)
{
if(!stack_to_array(rs_bot,rs))
general_error(ERROR_RS_UNDERFLOW,F,F,NULL);
}
/* returns pointer to top of stack */
CELL array_to_stack(F_ARRAY *array, CELL bottom)
{
CELL depth = array_capacity(array) * CELLS;
memcpy((void*)bottom,array + 1,depth);
return bottom + depth - CELLS;
}
void primitive_set_datastack(void)
{
ds = array_to_stack(untag_array(dpop()),ds_bot);
}
void primitive_set_retainstack(void)
{
rs = array_to_stack(untag_array(dpop()),rs_bot);
}
/* Used to implement call( */
void primitive_check_datastack(void)
{
F_FIXNUM out = to_fixnum(dpop());
F_FIXNUM in = to_fixnum(dpop());
F_FIXNUM height = out - in;
F_ARRAY *array = untag_array(dpop());
F_FIXNUM length = array_capacity(array);
F_FIXNUM depth = (ds - ds_bot + CELLS) / CELLS;
if(depth - height != length)
dpush(F);
else
{
F_FIXNUM i;
for(i = 0; i < length - in; i++)
{
if(get(ds_bot + i * CELLS) != array_nth(array,i))
{
dpush(F);
return;
}
}
dpush(T);
}
}
void primitive_getenv(void)
{
F_FIXNUM e = untag_fixnum_fast(dpeek());
drepl(userenv[e]);
}
void primitive_setenv(void)
{
F_FIXNUM e = untag_fixnum_fast(dpop());
CELL value = dpop();
userenv[e] = value;
}
void primitive_exit(void)
{
exit(to_fixnum(dpop()));
}
void primitive_micros(void)
{
box_unsigned_8(current_micros());
}
void primitive_sleep(void)
{
sleep_micros(to_cell(dpop()));
}
void primitive_set_slot(void)
{
F_FIXNUM slot = untag_fixnum_fast(dpop());
CELL obj = dpop();
CELL value = dpop();
set_slot(obj,slot,value);
}
void primitive_load_locals(void)
{
F_FIXNUM count = untag_fixnum_fast(dpop());
memcpy((CELL *)(rs + CELLS),(CELL *)(ds - CELLS * (count - 1)),CELLS * count);
ds -= CELLS * count;
rs += CELLS * count;
}