257 lines
6.8 KiB
C++
257 lines
6.8 KiB
C++
#include "master.hpp"
|
|
|
|
namespace factor {
|
|
|
|
gc_event::gc_event(gc_op op, factor_vm* parent)
|
|
: op(op),
|
|
cards_scanned(0),
|
|
decks_scanned(0),
|
|
code_blocks_scanned(0),
|
|
start_time(nano_count()),
|
|
card_scan_time(0),
|
|
code_scan_time(0),
|
|
data_sweep_time(0),
|
|
code_sweep_time(0),
|
|
compaction_time(0) {
|
|
data_heap_before = parent->data_room();
|
|
code_heap_before = parent->code->allocator->as_allocator_room();
|
|
start_time = nano_count();
|
|
}
|
|
|
|
void gc_event::started_card_scan() { temp_time = nano_count(); }
|
|
|
|
void gc_event::ended_card_scan(cell cards_scanned_, cell decks_scanned_) {
|
|
cards_scanned += cards_scanned_;
|
|
decks_scanned += decks_scanned_;
|
|
card_scan_time = (cell)(nano_count() - temp_time);
|
|
}
|
|
|
|
void gc_event::started_code_scan() { temp_time = nano_count(); }
|
|
|
|
void gc_event::ended_code_scan(cell code_blocks_scanned_) {
|
|
code_blocks_scanned += code_blocks_scanned_;
|
|
code_scan_time = (cell)(nano_count() - temp_time);
|
|
}
|
|
|
|
void gc_event::started_data_sweep() { temp_time = nano_count(); }
|
|
|
|
void gc_event::ended_data_sweep() {
|
|
data_sweep_time = (cell)(nano_count() - temp_time);
|
|
}
|
|
|
|
void gc_event::started_code_sweep() { temp_time = nano_count(); }
|
|
|
|
void gc_event::ended_code_sweep() {
|
|
code_sweep_time = (cell)(nano_count() - temp_time);
|
|
}
|
|
|
|
void gc_event::started_compaction() { temp_time = nano_count(); }
|
|
|
|
void gc_event::ended_compaction() {
|
|
compaction_time = (cell)(nano_count() - temp_time);
|
|
}
|
|
|
|
void gc_event::ended_gc(factor_vm* parent) {
|
|
data_heap_after = parent->data_room();
|
|
code_heap_after = parent->code->allocator->as_allocator_room();
|
|
total_time = (cell)(nano_count() - start_time);
|
|
}
|
|
|
|
gc_state::gc_state(gc_op op, factor_vm* parent) : op(op) {
|
|
if (parent->gc_events) {
|
|
event = new gc_event(op, parent);
|
|
start_time = nano_count();
|
|
} else
|
|
event = NULL;
|
|
}
|
|
|
|
gc_state::~gc_state() {
|
|
if (event) {
|
|
delete event;
|
|
event = NULL;
|
|
}
|
|
}
|
|
|
|
void factor_vm::end_gc() {
|
|
if (gc_events) {
|
|
current_gc->event->ended_gc(this);
|
|
gc_events->push_back(*current_gc->event);
|
|
}
|
|
}
|
|
|
|
void factor_vm::start_gc_again() {
|
|
end_gc();
|
|
|
|
switch (current_gc->op) {
|
|
case collect_nursery_op:
|
|
/* Nursery collection can fail if aging does not have enough
|
|
free space to fit all live objects from nursery. */
|
|
current_gc->op = collect_aging_op;
|
|
break;
|
|
case collect_aging_op:
|
|
/* Aging collection can fail if the aging semispace cannot fit
|
|
all the live objects from the other aging semispace and the
|
|
nursery. */
|
|
current_gc->op = collect_to_tenured_op;
|
|
break;
|
|
default:
|
|
/* Nothing else should fail mid-collection due to insufficient
|
|
space in the target generation. */
|
|
critical_error("in start_gc_again, bad GC op", current_gc->op);
|
|
break;
|
|
}
|
|
|
|
if (gc_events)
|
|
current_gc->event = new gc_event(current_gc->op, this);
|
|
}
|
|
|
|
void factor_vm::set_current_gc_op(gc_op op) {
|
|
current_gc->op = op;
|
|
if (gc_events)
|
|
current_gc->event->op = op;
|
|
}
|
|
|
|
void factor_vm::gc(gc_op op, cell requested_size) {
|
|
FACTOR_ASSERT(!gc_off);
|
|
FACTOR_ASSERT(!current_gc);
|
|
|
|
/* Important invariant: tenured space must have enough contiguous free
|
|
space to fit the entire contents of the aging space and nursery. This is
|
|
because when doing a full collection, objects from younger generations
|
|
are promoted before any unreachable tenured objects are freed. */
|
|
FACTOR_ASSERT(!data->high_fragmentation_p());
|
|
|
|
current_gc = new gc_state(op, this);
|
|
atomic::store(¤t_gc_p, true);
|
|
|
|
/* Keep trying to GC higher and higher generations until we don't run
|
|
out of space in the target generation. */
|
|
for (;;) {
|
|
try {
|
|
if (gc_events)
|
|
current_gc->event->op = current_gc->op;
|
|
|
|
switch (current_gc->op) {
|
|
case collect_nursery_op:
|
|
collect_nursery();
|
|
break;
|
|
case collect_aging_op:
|
|
/* We end up here if the above fails. */
|
|
collect_aging();
|
|
if (data->high_fragmentation_p()) {
|
|
/* Change GC op so that if we fail again, we crash. */
|
|
set_current_gc_op(collect_full_op);
|
|
collect_full();
|
|
}
|
|
break;
|
|
case collect_to_tenured_op:
|
|
/* We end up here if the above fails. */
|
|
collect_to_tenured();
|
|
if (data->high_fragmentation_p()) {
|
|
/* Change GC op so that if we fail again, we crash. */
|
|
set_current_gc_op(collect_full_op);
|
|
collect_full();
|
|
}
|
|
break;
|
|
case collect_full_op:
|
|
collect_full();
|
|
break;
|
|
case collect_compact_op:
|
|
collect_compact();
|
|
break;
|
|
case collect_growing_heap_op:
|
|
collect_growing_heap(requested_size);
|
|
break;
|
|
default:
|
|
critical_error("in gc, bad GC op", current_gc->op);
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
catch (const must_start_gc_again&) {
|
|
/* We come back here if the target generation is full. */
|
|
start_gc_again();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
end_gc();
|
|
|
|
atomic::store(¤t_gc_p, false);
|
|
delete current_gc;
|
|
current_gc = NULL;
|
|
|
|
/* Check the invariant again, just in case. */
|
|
FACTOR_ASSERT(!data->high_fragmentation_p());
|
|
}
|
|
|
|
void factor_vm::primitive_minor_gc() {
|
|
gc(collect_nursery_op, 0);
|
|
}
|
|
|
|
void factor_vm::primitive_full_gc() {
|
|
gc(collect_full_op, 0);
|
|
}
|
|
|
|
void factor_vm::primitive_compact_gc() {
|
|
gc(collect_compact_op, 0);
|
|
}
|
|
|
|
/*
|
|
* It is up to the caller to fill in the object's fields in a meaningful
|
|
* fashion!
|
|
*/
|
|
/* Allocates memory */
|
|
object* factor_vm::allot_large_object(cell type, cell size) {
|
|
/* If tenured space does not have enough room, collect and compact */
|
|
cell requested_size = size + data->high_water_mark();
|
|
if (!data->tenured->can_allot_p(requested_size)) {
|
|
primitive_compact_gc();
|
|
|
|
/* If it still won't fit, grow the heap */
|
|
if (!data->tenured->can_allot_p(requested_size)) {
|
|
gc(collect_growing_heap_op, size);
|
|
}
|
|
}
|
|
|
|
object* obj = data->tenured->allot(size);
|
|
|
|
/* Allows initialization code to store old->new pointers
|
|
without hitting the write barrier in the common case of
|
|
a nursery allocation */
|
|
write_barrier(obj, size);
|
|
|
|
obj->initialize(type);
|
|
return obj;
|
|
}
|
|
|
|
void factor_vm::primitive_enable_gc_events() {
|
|
gc_events = new std::vector<gc_event>();
|
|
}
|
|
|
|
/* Allocates memory (byte_array_from_value, result.add) */
|
|
/* XXX: Remember that growable_array has a data_root already */
|
|
void factor_vm::primitive_disable_gc_events() {
|
|
if (gc_events) {
|
|
growable_array result(this);
|
|
|
|
std::vector<gc_event>* gc_events = this->gc_events;
|
|
this->gc_events = NULL;
|
|
|
|
FACTOR_FOR_EACH(*gc_events) {
|
|
gc_event event = *iter;
|
|
byte_array* obj = byte_array_from_value(&event);
|
|
result.add(tag<byte_array>(obj));
|
|
}
|
|
|
|
result.trim();
|
|
ctx->push(result.elements.value());
|
|
|
|
delete this->gc_events;
|
|
} else
|
|
ctx->push(false_object);
|
|
}
|
|
|
|
}
|