factor/extra/inverse/inverse.factor

217 lines
5.9 KiB
Factor

USING: kernel words inspector slots quotations sequences assocs
math arrays inference effects shuffle continuations debugger
tuples namespaces vectors bit-arrays byte-arrays strings sbufs
math.functions macros ;
IN: inverse
: (repeat) ( from to quot -- )
pick pick >= [
3drop
] [
[ swap >r call 1+ r> ] keep (repeat)
] if ; inline
: repeat ( n quot -- ) 0 -rot (repeat) ; inline
TUPLE: fail ;
: fail ( -- * ) \ fail construct-empty throw ;
M: fail summary drop "Unification failed" ;
: assure ( ? -- ) [ fail ] unless ;
: =/fail ( obj1 obj2 -- )
= assure ;
! Inverse of a quotation
: define-inverse ( word quot -- ) "inverse" set-word-prop ;
DEFER: [undo]
: make-inverse ( word -- quot )
word-def [undo] ;
TUPLE: no-inverse word ;
: no-inverse ( word -- * ) \ no-inverse construct-empty throw ;
M: no-inverse summary
drop "The word cannot be used in pattern matching" ;
GENERIC: inverse ( word -- quot )
M: word inverse
dup "inverse" word-prop [ ]
[ dup primitive? [ no-inverse ] [ make-inverse ] if ] ?if ;
: undo-literal ( object -- quot )
[ =/fail ] curry ;
M: object inverse undo-literal ;
M: symbol inverse undo-literal ;
: ?word-prop ( word/object name -- value/f )
over word? [ word-prop ] [ 2drop f ] if ;
: group-pops ( seq -- matrix )
[
dup length [
2dup swap nth dup "pop-length" ?word-prop
[ 1+ dupd + tuck >r pick r> swap subseq , 1- ]
[ 1quotation , ] ?if
] repeat drop
] [ ] make ;
: inverse-pop ( quot -- inverse )
unclip >r reverse r> "pop-inverse" word-prop call ;
: firstn ( n -- quot )
{ [ drop ] [ first ] [ first2 ] [ first3 ] [ first4 ] } nth ;
: define-pop-inverse ( word n quot -- )
-rot 2dup "pop-length" set-word-prop
firstn rot append "pop-inverse" set-word-prop ;
: [undo] ( quot -- undo )
reverse group-pops [
dup length 1 = [ first inverse ] [ inverse-pop ] if
] map concat [ ] like ;
MACRO: undo ( quot -- ) [undo] ;
! Inversions of selected words
\ swap [ swap ] define-inverse
\ dup [ [ =/fail ] keep ] define-inverse
\ 2dup [ over =/fail over =/fail ] define-inverse
\ 3dup [ pick =/fail pick =/fail pick =/fail ] define-inverse
\ pick [ >r pick r> =/fail ] define-inverse
\ tuck [ swapd [ =/fail ] keep ] define-inverse
\ >r [ r> ] define-inverse
\ r> [ >r ] define-inverse
\ tuple>array [ >tuple ] define-inverse
\ >tuple [ tuple>array ] define-inverse
\ reverse [ reverse ] define-inverse
\ undo 1 [ [ call ] curry ] define-pop-inverse
\ map 1 [ [undo] [ over sequence? assure map ] curry ] define-pop-inverse
\ neg [ neg ] define-inverse
\ recip [ recip ] define-inverse
\ exp [ log ] define-inverse
\ log [ exp ] define-inverse
\ not [ not ] define-inverse
\ sq [ sqrt ] define-inverse
\ sqrt [ sq ] define-inverse
: assert-literal ( n -- n )
dup [ word? ] keep symbol? not and
[ "Literal missing in pattern matching" throw ] when ;
\ + 1 [ assert-literal [ - ] curry ] define-pop-inverse
\ - 1 [ assert-literal [ + ] curry ] define-pop-inverse
\ * 1 [ assert-literal [ / ] curry ] define-pop-inverse
\ / 1 [ assert-literal [ * ] curry ] define-pop-inverse
\ ^ 1 [ assert-literal recip [ ^ ] curry ] define-pop-inverse
\ ? 2 [
[ assert-literal ] 2apply
[ swap >r over = r> swap [ 2drop f ] [ = [ t ] [ fail ] if ] if ]
2curry
] define-pop-inverse
: _ f ;
\ _ [ drop ] define-inverse
: both ( object object -- object )
dupd assert= ;
\ both [ dup ] define-inverse
: assure-length ( seq length -- seq )
over length =/fail ;
{
{ >array array? }
{ >vector vector? }
{ >fixnum fixnum? }
{ >bignum bignum? }
{ >bit-array bit-array? }
{ >float float? }
{ >byte-array byte-array? }
{ >string string? }
{ >sbuf sbuf? }
{ >quotation quotation? }
} [ \ dup swap \ assure 3array >quotation define-inverse ] assoc-each
! These actually work on all seqs--should they?
\ 1array [ 1 assure-length first ] define-inverse
\ 2array [ 2 assure-length first2 ] define-inverse
\ 3array [ 3 assure-length first3 ] define-inverse
\ 4array [ 4 assure-length first4 ] define-inverse
\ first [ 1array ] define-inverse
\ first2 [ 2array ] define-inverse
\ first3 [ 3array ] define-inverse
\ first4 [ 4array ] define-inverse
! Constructor inverse
: deconstruct-pred ( class -- quot )
"predicate" word-prop [ dupd call assure ] curry ;
: slot-readers ( class -- quot )
"slots" word-prop 1 tail ! tail gets rid of delegate
[ slot-spec-reader 1quotation [ keep ] curry ] map concat
[ drop ] append ;
: ?wrapped ( object -- wrapped )
dup wrapper? [ wrapped ] when ;
: boa-inverse ( class -- quot )
[ deconstruct-pred ] keep slot-readers append ;
\ construct-boa 1 [ ?wrapped boa-inverse ] define-pop-inverse
: empty-inverse ( class -- quot )
deconstruct-pred
[ tuple>array 1 tail [ ] contains? [ fail ] when ]
compose ;
\ construct-empty 1 [ ?wrapped empty-inverse ] define-pop-inverse
: writer>reader ( word -- word' )
[ "writing" word-prop "slots" word-prop ] keep
[ swap slot-spec-writer = ] curry find nip slot-spec-reader ;
: construct-inverse ( class setters -- quot )
>r deconstruct-pred r>
[ writer>reader ] map [ get-slots ] curry
compose ;
\ construct 2 [ ?wrapped swap construct-inverse ] define-pop-inverse
! More useful inverse-based combinators
: recover-fail ( try fail -- )
[ drop call ] [
>r nip r> dup fail?
[ drop call ] [ nip throw ] if
] recover ; inline
: infer-out ( quot -- #out )
infer effect-out ;
MACRO: matches? ( quot -- ? )
[undo] [ t ] append
[ [ [ f ] recover-fail ] curry ] keep
infer-out 1- [ nnip ] curry append ;
TUPLE: no-match ;
: no-match ( -- * ) \ no-match construct-empty throw ;
M: no-match summary drop "Fall through in which" ;
: recover-chain ( seq -- quot )
[ no-match ] [ swap \ recover-fail 3array >quotation ] reduce ;
MACRO: which ( quot-alist -- )
reverse [ >r [undo] r> append ] { } assoc>map
recover-chain ;