factor/core/math/math.factor

167 lines
3.8 KiB
Factor
Executable File

! Copyright (C) 2003, 2008 Slava Pestov.
! See http://factorcode.org/license.txt for BSD license.
USING: kernel math.private ;
IN: math
GENERIC: >fixnum ( x -- n ) foldable
GENERIC: >bignum ( x -- n ) foldable
GENERIC: >integer ( x -- n ) foldable
GENERIC: >float ( x -- y ) foldable
GENERIC: numerator ( a/b -- a )
GENERIC: denominator ( a/b -- b )
GENERIC: real-part ( z -- x )
GENERIC: imaginary-part ( z -- y )
MATH: number= ( x y -- ? ) foldable
M: object number= 2drop f ;
MATH: < ( x y -- ? ) foldable
MATH: <= ( x y -- ? ) foldable
MATH: > ( x y -- ? ) foldable
MATH: >= ( x y -- ? ) foldable
MATH: + ( x y -- z ) foldable
MATH: - ( x y -- z ) foldable
MATH: * ( x y -- z ) foldable
MATH: / ( x y -- z ) foldable
MATH: /f ( x y -- z ) foldable
MATH: /i ( x y -- z ) foldable
MATH: mod ( x y -- z ) foldable
MATH: /mod ( x y -- z w ) foldable
MATH: bitand ( x y -- z ) foldable
MATH: bitor ( x y -- z ) foldable
MATH: bitxor ( x y -- z ) foldable
GENERIC# shift 1 ( x n -- y ) foldable
GENERIC: bitnot ( x -- y ) foldable
GENERIC# bit? 1 ( x n -- ? ) foldable
GENERIC: abs ( x -- y ) foldable
<PRIVATE
GENERIC: (log2) ( x -- n ) foldable
PRIVATE>
: log2 ( x -- n )
dup 0 <= [
"log2 expects positive inputs" throw
] [
(log2)
] if ; inline
: zero? ( x -- ? ) 0 number= ; inline
: 1+ ( x -- y ) 1 + ; inline
: 1- ( x -- y ) 1 - ; inline
: 2/ ( x -- y ) -1 shift ; inline
: sq ( x -- y ) dup * ; inline
: neg ( x -- -x ) 0 swap - ; inline
: recip ( x -- y ) 1 swap / ; inline
: sgn ( x -- n ) dup 0 < [ drop -1 ] [ 0 > 1 0 ? ] if ; inline
: ?1+ ( x -- y ) [ 1+ ] [ 0 ] if* ; inline
: rem ( x y -- z ) abs tuck mod over + swap mod ; foldable
: 2^ ( n -- 2^n ) 1 swap shift ; inline
: even? ( n -- ? ) 1 bitand zero? ;
: odd? ( n -- ? ) 1 bitand 1 number= ;
UNION: integer fixnum bignum ;
UNION: rational integer ratio ;
UNION: real rational float ;
UNION: number real complex ;
GENERIC: fp-nan? ( x -- ? )
M: object fp-nan?
drop f ;
M: float fp-nan?
double>bits -51 shift HEX: fff [ bitand ] keep = ;
GENERIC: fp-infinity? ( x -- ? )
M: object fp-infinity?
drop f ;
M: float fp-infinity? ( float -- ? )
double>bits
dup -52 shift HEX: 7ff [ bitand ] keep = [
HEX: fffffffffffff bitand 0 =
] [
drop f
] if ;
: next-power-of-2 ( m -- n )
dup 2 <= [ drop 2 ] [ 1- log2 1+ 2^ ] if ; inline
: power-of-2? ( n -- ? )
dup 0 <= [ drop f ] [ dup 1- bitand zero? ] if ; foldable
: align ( m w -- n )
1- [ + ] keep bitnot bitand ; inline
<PRIVATE
: iterate-prep ( n quot -- i n quot ) [ 0 ] 2dip ; inline
: if-iterate? ( i n true false -- ) [ 2over < ] 2dip if ; inline
: iterate-step ( i n quot -- i n quot )
#! Apply quot to i, keep i and quot, hide n.
swap [ 2dup 2slip ] dip swap ; inline
: iterate-next ( i n quot -- i' n quot ) [ 1+ ] 2dip ; inline
PRIVATE>
: (each-integer) ( i n quot: ( i -- ) -- )
[ iterate-step iterate-next (each-integer) ]
[ 3drop ] if-iterate? ; inline recursive
: (find-integer) ( i n quot: ( i -- ? ) -- i )
[
iterate-step roll
[ 2drop ] [ iterate-next (find-integer) ] if
] [ 3drop f ] if-iterate? ; inline recursive
: (all-integers?) ( i n quot: ( i -- ? ) -- ? )
[
iterate-step roll
[ iterate-next (all-integers?) ] [ 3drop f ] if
] [ 3drop t ] if-iterate? ; inline recursive
: each-integer ( n quot -- )
iterate-prep (each-integer) ; inline
: times ( n quot -- )
[ drop ] prepose each-integer ; inline
: find-integer ( n quot -- i )
iterate-prep (find-integer) ; inline
: all-integers? ( n quot -- ? )
iterate-prep (all-integers?) ; inline
: find-last-integer ( n quot: ( i -- ? ) -- i )
over 0 < [
2drop f
] [
2dup 2slip rot [
drop
] [
[ 1- ] dip find-last-integer
] if
] if ; inline recursive