factor/basis/math/miller-rabin/miller-rabin.factor

115 lines
2.6 KiB
Factor
Executable File

! Copyright (C) 2008 Doug Coleman.
! See http://factorcode.org/license.txt for BSD license.
USING: combinators kernel locals math math.functions math.ranges
random sequences sets combinators.short-circuit math.bitwise
math math.order ;
IN: math.miller-rabin
: >odd ( n -- int ) 0 set-bit ; foldable
: >even ( n -- int ) 0 clear-bit ; foldable
: next-even ( m -- n ) >even 2 + ;
: next-odd ( m -- n ) dup even? [ 1 + ] [ 2 + ] if ;
<PRIVATE
:: (miller-rabin) ( n trials -- ? )
n 1 - :> n-1
n-1 factor-2s :> s :> r
0 :> a!
trials [
drop
2 n 2 - [a,b] random a!
a s n ^mod 1 = [
f
] [
r iota [
2^ s * a swap n ^mod n - -1 =
] any? not
] if
] any? not ;
PRIVATE>
: miller-rabin* ( n numtrials -- ? )
over {
{ [ dup 1 <= ] [ 3drop f ] }
{ [ dup 2 = ] [ 3drop t ] }
{ [ dup even? ] [ 3drop f ] }
[ drop (miller-rabin) ]
} cond ;
: miller-rabin ( n -- ? ) 10 miller-rabin* ;
ERROR: prime-range-error n ;
: next-prime ( n -- p )
dup 1 < [ prime-range-error ] when
dup 1 = [
drop 2
] [
next-odd dup miller-rabin [ next-prime ] unless
] if ;
: random-bits* ( numbits -- n )
1 - [ random-bits ] keep set-bit ;
: random-prime ( numbits -- p )
random-bits* next-prime ;
ERROR: no-relative-prime n ;
<PRIVATE
: (find-relative-prime) ( n guess -- p )
over 1 <= [ over no-relative-prime ] when
dup 1 <= [ drop 3 ] when
2dup gcd nip 1 > [ 2 + (find-relative-prime) ] [ nip ] if ;
PRIVATE>
: find-relative-prime* ( n guess -- p )
#! find a prime relative to n with initial guess
>odd (find-relative-prime) ;
: find-relative-prime ( n -- p )
dup random find-relative-prime* ;
ERROR: too-few-primes ;
: unique-primes ( numbits n -- seq )
#! generate two primes
swap
dup 5 < [ too-few-primes ] when
2dup [ random-prime ] curry replicate
dup all-unique? [ 2nip ] [ drop unique-primes ] if ;
! Safe primes are of the form p = 2q + 1, p,q are prime
! See http://en.wikipedia.org/wiki/Safe_prime
<PRIVATE
: safe-prime-candidate? ( n -- ? )
1 + 6 divisor? ;
: next-safe-prime-candidate ( n -- candidate )
next-prime dup safe-prime-candidate?
[ next-safe-prime-candidate ] unless ;
PRIVATE>
: safe-prime? ( q -- ? )
{
[ 1 - 2 / dup integer? [ miller-rabin ] [ drop f ] if ]
[ miller-rabin ]
} 1&& ;
: next-safe-prime ( n -- q )
next-safe-prime-candidate
dup safe-prime? [ next-safe-prime ] unless ;
: random-safe-prime ( numbits -- p )
random-bits* next-safe-prime ;