factor/vm/data_gc.c

587 lines
13 KiB
C
Executable File

#include "master.h"
/* Scan all the objects in the card */
void copy_card(F_CARD *ptr, CELL gen, CELL here)
{
CELL card_scan = (CELL)CARD_TO_ADDR(ptr) + CARD_OFFSET(ptr);
CELL card_end = (CELL)CARD_TO_ADDR(ptr + 1);
if(here < card_end)
card_end = here;
copy_reachable_objects(card_scan,&card_end);
cards_scanned++;
}
void copy_card_deck(F_DECK *deck, CELL gen, F_CARD mask, F_CARD unmask)
{
F_CARD *first_card = DECK_TO_CARD(deck);
F_CARD *last_card = DECK_TO_CARD(deck + 1);
CELL here = data_heap->generations[gen].here;
u32 *quad_ptr;
u32 quad_mask = mask | (mask << 8) | (mask << 16) | (mask << 24);
for(quad_ptr = (u32 *)first_card; quad_ptr < (u32 *)last_card; quad_ptr++)
{
if(*quad_ptr & quad_mask)
{
F_CARD *ptr = (F_CARD *)quad_ptr;
int card;
for(card = 0; card < 4; card++)
{
if(ptr[card] & mask)
{
copy_card(&ptr[card],gen,here);
ptr[card] &= ~unmask;
}
}
}
}
decks_scanned++;
}
/* Copy all newspace objects referenced from marked cards to the destination */
void copy_gen_cards(CELL gen)
{
F_DECK *first_deck = ADDR_TO_DECK(data_heap->generations[gen].start);
F_DECK *last_deck = ADDR_TO_DECK(data_heap->generations[gen].end);
F_CARD mask, unmask;
/* if we are collecting the nursery, we care about old->nursery pointers
but not old->aging pointers */
if(collecting_gen == NURSERY)
{
mask = CARD_POINTS_TO_NURSERY;
/* after the collection, no old->nursery pointers remain
anywhere, but old->aging pointers might remain in tenured
space */
if(gen == TENURED)
unmask = CARD_POINTS_TO_NURSERY;
/* after the collection, all cards in aging space can be
cleared */
else if(HAVE_AGING_P && gen == AGING)
unmask = CARD_MARK_MASK;
else
{
critical_error("bug in copy_gen_cards",gen);
return;
}
}
/* if we are collecting aging space into tenured space, we care about
all old->nursery and old->aging pointers. no old->aging pointers can
remain */
else if(HAVE_AGING_P && collecting_gen == AGING)
{
if(collecting_aging_again)
{
mask = CARD_POINTS_TO_AGING;
unmask = CARD_MARK_MASK;
}
/* after we collect aging space into the aging semispace, no
old->nursery pointers remain but tenured space might still have
pointers to aging space. */
else
{
mask = CARD_POINTS_TO_AGING;
unmask = CARD_POINTS_TO_NURSERY;
}
}
else
{
critical_error("bug in copy_gen_cards",gen);
return;
}
F_DECK *ptr;
for(ptr = first_deck; ptr < last_deck; ptr++)
{
if(*ptr & mask)
{
copy_card_deck(ptr,gen,mask,unmask);
*ptr &= ~unmask;
}
}
}
/* Scan cards in all generations older than the one being collected, copying
old->new references */
void copy_cards(void)
{
int i;
for(i = collecting_gen + 1; i < data_heap->gen_count; i++)
copy_gen_cards(i);
}
/* Copy all tagged pointers in a range of memory */
void copy_stack_elements(F_SEGMENT *region, CELL top)
{
CELL ptr = region->start;
for(; ptr <= top; ptr += CELLS)
copy_handle((CELL*)ptr);
}
void copy_registered_locals(void)
{
CELL ptr = gc_locals_region->start;
for(; ptr <= gc_locals; ptr += CELLS)
copy_handle(*(CELL **)ptr);
}
/* Copy roots over at the start of GC, namely various constants, stacks,
the user environment and extra roots registered with REGISTER_ROOT */
void copy_roots(void)
{
copy_handle(&T);
copy_handle(&bignum_zero);
copy_handle(&bignum_pos_one);
copy_handle(&bignum_neg_one);
copy_registered_locals();
copy_stack_elements(extra_roots_region,extra_roots);
save_stacks();
F_CONTEXT *stacks = stack_chain;
while(stacks)
{
copy_stack_elements(stacks->datastack_region,stacks->datastack);
copy_stack_elements(stacks->retainstack_region,stacks->retainstack);
copy_handle(&stacks->catchstack_save);
copy_handle(&stacks->current_callback_save);
mark_active_blocks(stacks);
stacks = stacks->next;
}
int i;
for(i = 0; i < USER_ENV; i++)
copy_handle(&userenv[i]);
}
/* Given a pointer to oldspace, copy it to newspace */
INLINE void *copy_untagged_object(void *pointer, CELL size)
{
if(newspace->here + size >= newspace->end)
longjmp(gc_jmp,1);
allot_barrier(newspace->here);
void *newpointer = allot_zone(newspace,size);
F_GC_STATS *s = &gc_stats[collecting_gen];
s->object_count++;
s->bytes_copied += size;
memcpy(newpointer,pointer,size);
return newpointer;
}
INLINE void forward_object(CELL pointer, CELL newpointer)
{
if(pointer != newpointer)
put(UNTAG(pointer),RETAG(newpointer,GC_COLLECTED));
}
INLINE CELL copy_object_impl(CELL pointer)
{
CELL newpointer = (CELL)copy_untagged_object(
(void*)UNTAG(pointer),
object_size(pointer));
forward_object(pointer,newpointer);
return newpointer;
}
/* Follow a chain of forwarding pointers */
CELL resolve_forwarding(CELL untagged, CELL tag)
{
CELL header = get(untagged);
/* another forwarding pointer */
if(TAG(header) == GC_COLLECTED)
return resolve_forwarding(UNTAG(header),tag);
/* we've found the destination */
else
{
CELL pointer = RETAG(untagged,tag);
if(should_copy(untagged))
pointer = RETAG(copy_object_impl(pointer),tag);
return pointer;
}
}
/* Given a pointer to a tagged pointer to oldspace, copy it to newspace.
If the object has already been copied, return the forwarding
pointer address without copying anything; otherwise, install
a new forwarding pointer. */
INLINE CELL copy_object(CELL pointer)
{
CELL tag = TAG(pointer);
CELL header = get(UNTAG(pointer));
if(TAG(header) == GC_COLLECTED)
return resolve_forwarding(UNTAG(header),tag);
else
return RETAG(copy_object_impl(pointer),tag);
}
void copy_handle(CELL *handle)
{
CELL pointer = *handle;
if(!immediate_p(pointer) && should_copy(pointer))
*handle = copy_object(pointer);
}
CELL copy_next_from_nursery(CELL scan)
{
CELL *obj = (CELL *)scan;
CELL *end = (CELL *)(scan + binary_payload_start(scan));
if(obj != end)
{
obj++;
CELL nursery_start = nursery.start;
CELL nursery_end = nursery.end;
for(; obj < end; obj++)
{
CELL pointer = *obj;
if(!immediate_p(pointer)
&& (pointer >= nursery_start && pointer < nursery_end))
*obj = copy_object(pointer);
}
}
return scan + untagged_object_size(scan);
}
CELL copy_next_from_aging(CELL scan)
{
CELL *obj = (CELL *)scan;
CELL *end = (CELL *)(scan + binary_payload_start(scan));
if(obj != end)
{
obj++;
CELL tenured_start = data_heap->generations[TENURED].start;
CELL tenured_end = data_heap->generations[TENURED].end;
CELL newspace_start = newspace->start;
CELL newspace_end = newspace->end;
for(; obj < end; obj++)
{
CELL pointer = *obj;
if(!immediate_p(pointer)
&& !(pointer >= newspace_start && pointer < newspace_end)
&& !(pointer >= tenured_start && pointer < tenured_end))
*obj = copy_object(pointer);
}
}
return scan + untagged_object_size(scan);
}
CELL copy_next_from_tenured(CELL scan)
{
CELL *obj = (CELL *)scan;
CELL *end = (CELL *)(scan + binary_payload_start(scan));
if(obj != end)
{
obj++;
CELL newspace_start = newspace->start;
CELL newspace_end = newspace->end;
for(; obj < end; obj++)
{
CELL pointer = *obj;
if(!immediate_p(pointer) && !(pointer >= newspace_start && pointer < newspace_end))
*obj = copy_object(pointer);
}
}
mark_object_code_block(scan);
return scan + untagged_object_size(scan);
}
void copy_reachable_objects(CELL scan, CELL *end)
{
if(HAVE_NURSERY_P && collecting_gen == NURSERY)
{
while(scan < *end)
scan = copy_next_from_nursery(scan);
}
else if(HAVE_AGING_P && collecting_gen == AGING)
{
while(scan < *end)
scan = copy_next_from_aging(scan);
}
else if(collecting_gen == TENURED)
{
while(scan < *end)
scan = copy_next_from_tenured(scan);
}
}
/* Prepare to start copying reachable objects into an unused zone */
void begin_gc(CELL requested_bytes)
{
if(growing_data_heap)
{
if(collecting_gen != TENURED)
critical_error("Invalid parameters to begin_gc",0);
old_data_heap = data_heap;
set_data_heap(grow_data_heap(old_data_heap,requested_bytes));
newspace = &data_heap->generations[TENURED];
}
else if(collecting_accumulation_gen_p())
{
/* when collecting one of these generations, rotate it
with the semispace */
F_ZONE z = data_heap->generations[collecting_gen];
data_heap->generations[collecting_gen] = data_heap->semispaces[collecting_gen];
data_heap->semispaces[collecting_gen] = z;
reset_generation(collecting_gen);
newspace = &data_heap->generations[collecting_gen];
clear_cards(collecting_gen,collecting_gen);
clear_decks(collecting_gen,collecting_gen);
clear_allot_markers(collecting_gen,collecting_gen);
}
else
{
/* when collecting a younger generation, we copy
reachable objects to the next oldest generation,
so we set the newspace so the next generation. */
newspace = &data_heap->generations[collecting_gen + 1];
}
}
void end_gc(CELL gc_elapsed)
{
F_GC_STATS *s = &gc_stats[collecting_gen];
s->collections++;
s->gc_time += gc_elapsed;
if(s->max_gc_time < gc_elapsed)
s->max_gc_time = gc_elapsed;
if(growing_data_heap)
{
dealloc_data_heap(old_data_heap);
old_data_heap = NULL;
growing_data_heap = false;
}
if(collecting_accumulation_gen_p())
{
/* all younger generations except are now empty.
if collecting_gen == NURSERY here, we only have 1 generation;
old-school Cheney collector */
if(collecting_gen != NURSERY)
reset_generations(NURSERY,collecting_gen - 1);
}
else if(HAVE_NURSERY_P && collecting_gen == NURSERY)
{
nursery.here = nursery.start;
}
else
{
/* all generations up to and including the one
collected are now empty */
reset_generations(NURSERY,collecting_gen);
}
if(collecting_gen == TENURED)
{
/* now that all reachable code blocks have been marked,
deallocate the rest */
free_unmarked(&code_heap);
}
collecting_aging_again = false;
}
/* Collect gen and all younger generations.
If growing_data_heap_ is true, we must grow the data heap to such a size that
an allocation of requested_bytes won't fail */
void garbage_collection(CELL gen,
bool growing_data_heap_,
CELL requested_bytes)
{
if(gc_off)
{
critical_error("GC disabled",gen);
return;
}
s64 start = current_micros();
performing_gc = true;
growing_data_heap = growing_data_heap_;
collecting_gen = gen;
/* we come back here if a generation is full */
if(setjmp(gc_jmp))
{
/* We have no older generations we can try collecting, so we
resort to growing the data heap */
if(collecting_gen == TENURED)
{
growing_data_heap = true;
/* see the comment in unmark_marked() */
unmark_marked(&code_heap);
}
/* we try collecting AGING space twice before going on to
collect TENURED */
else if(HAVE_AGING_P
&& collecting_gen == AGING
&& !collecting_aging_again)
{
collecting_aging_again = true;
}
/* Collect the next oldest generation */
else
{
collecting_gen++;
}
}
begin_gc(requested_bytes);
/* initialize chase pointer */
CELL scan = newspace->here;
/* collect objects referenced from stacks and environment */
copy_roots();
/* collect objects referenced from older generations */
copy_cards();
/* do some tracing */
copy_reachable_objects(scan,&newspace->here);
/* don't scan code heap unless it has pointers to this
generation or younger */
if(collecting_gen >= last_code_heap_scan)
{
code_heap_scans++;
if(collecting_gen == TENURED)
update_code_heap_roots();
else
copy_code_heap_roots();
if(collecting_accumulation_gen_p())
last_code_heap_scan = collecting_gen;
else
last_code_heap_scan = collecting_gen + 1;
}
CELL gc_elapsed = (current_micros() - start);
end_gc(gc_elapsed);
performing_gc = false;
}
void gc(void)
{
garbage_collection(TENURED,false,0);
}
void minor_gc(void)
{
garbage_collection(NURSERY,false,0);
}
void primitive_gc(void)
{
gc();
}
void primitive_gc_stats(void)
{
GROWABLE_ARRAY(stats);
CELL i;
u64 total_gc_time = 0;
for(i = 0; i < MAX_GEN_COUNT; i++)
{
F_GC_STATS *s = &gc_stats[i];
GROWABLE_ARRAY_ADD(stats,allot_cell(s->collections));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(s->gc_time)));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(s->max_gc_time)));
GROWABLE_ARRAY_ADD(stats,allot_cell(s->collections == 0 ? 0 : s->gc_time / s->collections));
GROWABLE_ARRAY_ADD(stats,allot_cell(s->object_count));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(s->bytes_copied)));
total_gc_time += s->gc_time;
}
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(total_gc_time)));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(cards_scanned)));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(decks_scanned)));
GROWABLE_ARRAY_ADD(stats,allot_cell(code_heap_scans));
GROWABLE_ARRAY_TRIM(stats);
dpush(stats);
}
void clear_gc_stats(void)
{
int i;
for(i = 0; i < MAX_GEN_COUNT; i++)
memset(&gc_stats[i],0,sizeof(F_GC_STATS));
cards_scanned = 0;
decks_scanned = 0;
code_heap_scans = 0;
}
void primitive_clear_gc_stats(void)
{
clear_gc_stats();
}
void primitive_become(void)
{
F_ARRAY *new_objects = untag_array(dpop());
F_ARRAY *old_objects = untag_array(dpop());
CELL capacity = array_capacity(new_objects);
if(capacity != array_capacity(old_objects))
critical_error("bad parameters to become",0);
CELL i;
for(i = 0; i < capacity; i++)
{
CELL old_obj = array_nth(old_objects,i);
CELL new_obj = array_nth(new_objects,i);
forward_object(old_obj,new_obj);
}
gc();
compile_all_words();
}