factor/vm/data_gc.c

1002 lines
23 KiB
C
Executable File

#include "master.h"
CELL init_zone(F_ZONE *z, CELL size, CELL start)
{
z->size = size;
z->start = z->here = start;
z->end = start + size;
return z->end;
}
void init_card_decks(void)
{
CELL start = align(data_heap->segment->start,DECK_SIZE);
allot_markers_offset = (CELL)data_heap->allot_markers - (start >> CARD_BITS);
cards_offset = (CELL)data_heap->cards - (start >> CARD_BITS);
decks_offset = (CELL)data_heap->decks - (start >> DECK_BITS);
}
F_DATA_HEAP *alloc_data_heap(CELL gens,
CELL young_size,
CELL aging_size,
CELL tenured_size)
{
young_size = align(young_size,DECK_SIZE);
aging_size = align(aging_size,DECK_SIZE);
tenured_size = align(tenured_size,DECK_SIZE);
F_DATA_HEAP *data_heap = safe_malloc(sizeof(F_DATA_HEAP));
data_heap->young_size = young_size;
data_heap->aging_size = aging_size;
data_heap->tenured_size = tenured_size;
data_heap->gen_count = gens;
CELL total_size;
if(data_heap->gen_count == 2)
total_size = young_size + 2 * tenured_size;
else if(data_heap->gen_count == 3)
total_size = young_size + 2 * aging_size + 2 * tenured_size;
else
{
fatal_error("Invalid number of generations",data_heap->gen_count);
return NULL; /* can't happen */
}
total_size += DECK_SIZE;
data_heap->segment = alloc_segment(total_size);
data_heap->generations = safe_malloc(sizeof(F_ZONE) * data_heap->gen_count);
data_heap->semispaces = safe_malloc(sizeof(F_ZONE) * data_heap->gen_count);
CELL cards_size = total_size >> CARD_BITS;
data_heap->allot_markers = safe_malloc(cards_size);
data_heap->allot_markers_end = data_heap->allot_markers + cards_size;
data_heap->cards = safe_malloc(cards_size);
data_heap->cards_end = data_heap->cards + cards_size;
CELL decks_size = total_size >> DECK_BITS;
data_heap->decks = safe_malloc(decks_size);
data_heap->decks_end = data_heap->decks + decks_size;
CELL alloter = align(data_heap->segment->start,DECK_SIZE);
alloter = init_zone(&data_heap->generations[TENURED],tenured_size,alloter);
alloter = init_zone(&data_heap->semispaces[TENURED],tenured_size,alloter);
if(data_heap->gen_count == 3)
{
alloter = init_zone(&data_heap->generations[AGING],aging_size,alloter);
alloter = init_zone(&data_heap->semispaces[AGING],aging_size,alloter);
}
if(data_heap->gen_count >= 2)
{
alloter = init_zone(&data_heap->generations[NURSERY],young_size,alloter);
alloter = init_zone(&data_heap->semispaces[NURSERY],0,alloter);
}
if(data_heap->segment->end - alloter > DECK_SIZE)
critical_error("Bug in alloc_data_heap",alloter);
return data_heap;
}
F_DATA_HEAP *grow_data_heap(F_DATA_HEAP *data_heap, CELL requested_bytes)
{
CELL new_tenured_size = (data_heap->tenured_size * 2) + requested_bytes;
return alloc_data_heap(data_heap->gen_count,
data_heap->young_size,
data_heap->aging_size,
new_tenured_size);
}
void dealloc_data_heap(F_DATA_HEAP *data_heap)
{
dealloc_segment(data_heap->segment);
free(data_heap->generations);
free(data_heap->semispaces);
free(data_heap->allot_markers);
free(data_heap->cards);
free(data_heap->decks);
free(data_heap);
}
void clear_cards(CELL from, CELL to)
{
/* NOTE: reverse order due to heap layout. */
F_CARD *first_card = ADDR_TO_CARD(data_heap->generations[to].start);
F_CARD *last_card = ADDR_TO_CARD(data_heap->generations[from].end);
memset(first_card,0,last_card - first_card);
}
void clear_decks(CELL from, CELL to)
{
/* NOTE: reverse order due to heap layout. */
F_DECK *first_deck = ADDR_TO_DECK(data_heap->generations[to].start);
F_DECK *last_deck = ADDR_TO_DECK(data_heap->generations[from].end);
memset(first_deck,0,last_deck - first_deck);
}
void clear_allot_markers(CELL from, CELL to)
{
/* NOTE: reverse order due to heap layout. */
F_CARD *first_card = ADDR_TO_ALLOT_MARKER(data_heap->generations[to].start);
F_CARD *last_card = ADDR_TO_ALLOT_MARKER(data_heap->generations[from].end);
memset(first_card,INVALID_ALLOT_MARKER,last_card - first_card);
}
void set_data_heap(F_DATA_HEAP *data_heap_)
{
data_heap = data_heap_;
nursery = data_heap->generations[NURSERY];
init_card_decks();
clear_cards(NURSERY,TENURED);
clear_decks(NURSERY,TENURED);
clear_allot_markers(NURSERY,TENURED);
}
void gc_reset(void)
{
int i;
for(i = 0; i < MAX_GEN_COUNT; i++)
memset(&gc_stats[i],0,sizeof(F_GC_STATS));
cards_scanned = 0;
decks_scanned = 0;
code_heap_scans = 0;
}
void init_data_heap(CELL gens,
CELL young_size,
CELL aging_size,
CELL tenured_size,
bool secure_gc_)
{
set_data_heap(alloc_data_heap(gens,young_size,aging_size,tenured_size));
gc_locals_region = alloc_segment(getpagesize());
gc_locals = gc_locals_region->start - CELLS;
extra_roots_region = alloc_segment(getpagesize());
extra_roots = extra_roots_region->start - CELLS;
secure_gc = secure_gc_;
gc_reset();
}
/* Size of the object pointed to by a tagged pointer */
CELL object_size(CELL tagged)
{
if(immediate_p(tagged))
return 0;
else
return untagged_object_size(UNTAG(tagged));
}
/* Size of the object pointed to by an untagged pointer */
CELL untagged_object_size(CELL pointer)
{
return align8(unaligned_object_size(pointer));
}
/* Size of the data area of an object pointed to by an untagged pointer */
CELL unaligned_object_size(CELL pointer)
{
F_TUPLE *tuple;
F_TUPLE_LAYOUT *layout;
switch(untag_header(get(pointer)))
{
case ARRAY_TYPE:
case BIGNUM_TYPE:
return array_size(array_capacity((F_ARRAY*)pointer));
case BYTE_ARRAY_TYPE:
return byte_array_size(
byte_array_capacity((F_BYTE_ARRAY*)pointer));
case STRING_TYPE:
return string_size(string_capacity((F_STRING*)pointer));
case TUPLE_TYPE:
tuple = untag_object(pointer);
layout = untag_object(tuple->layout);
return tuple_size(layout);
case QUOTATION_TYPE:
return sizeof(F_QUOTATION);
case WORD_TYPE:
return sizeof(F_WORD);
case RATIO_TYPE:
return sizeof(F_RATIO);
case FLOAT_TYPE:
return sizeof(F_FLOAT);
case COMPLEX_TYPE:
return sizeof(F_COMPLEX);
case DLL_TYPE:
return sizeof(F_DLL);
case ALIEN_TYPE:
return sizeof(F_ALIEN);
case WRAPPER_TYPE:
return sizeof(F_WRAPPER);
case CALLSTACK_TYPE:
return callstack_size(
untag_fixnum_fast(((F_CALLSTACK *)pointer)->length));
default:
critical_error("Invalid header",pointer);
return -1; /* can't happen */
}
}
void primitive_size(void)
{
box_unsigned_cell(object_size(dpop()));
}
/* Push memory usage statistics in data heap */
void primitive_data_room(void)
{
F_ARRAY *a = allot_array(ARRAY_TYPE,data_heap->gen_count * 2,F);
int gen;
dpush(tag_fixnum((data_heap->cards_end - data_heap->cards) >> 10));
dpush(tag_fixnum((data_heap->decks_end - data_heap->decks) >> 10));
for(gen = 0; gen < data_heap->gen_count; gen++)
{
F_ZONE *z = (gen == NURSERY ? &nursery : &data_heap->generations[gen]);
set_array_nth(a,gen * 2,tag_fixnum((z->end - z->here) >> 10));
set_array_nth(a,gen * 2 + 1,tag_fixnum((z->size) >> 10));
}
dpush(tag_object(a));
}
/* Disables GC and activates next-object ( -- obj ) primitive */
void begin_scan(void)
{
heap_scan_ptr = data_heap->generations[TENURED].start;
gc_off = true;
}
void primitive_begin_scan(void)
{
gc();
begin_scan();
}
CELL next_object(void)
{
if(!gc_off)
general_error(ERROR_HEAP_SCAN,F,F,NULL);
CELL value = get(heap_scan_ptr);
CELL obj = heap_scan_ptr;
CELL type;
if(heap_scan_ptr >= data_heap->generations[TENURED].here)
return F;
type = untag_header(value);
heap_scan_ptr += untagged_object_size(heap_scan_ptr);
return RETAG(obj,type <= HEADER_TYPE ? type : OBJECT_TYPE);
}
/* Push object at heap scan cursor and advance; pushes f when done */
void primitive_next_object(void)
{
dpush(next_object());
}
/* Re-enables GC */
void primitive_end_scan(void)
{
gc_off = false;
}
/* Scan all the objects in the card */
void copy_card(F_CARD *ptr, CELL gen, CELL here)
{
CELL card_scan = (CELL)CARD_TO_ADDR(ptr) + CARD_OFFSET(ptr);
CELL card_end = (CELL)CARD_TO_ADDR(ptr + 1);
if(here < card_end)
card_end = here;
copy_reachable_objects(card_scan,&card_end);
cards_scanned++;
}
void copy_card_deck(F_DECK *deck, CELL gen, F_CARD mask, F_CARD unmask)
{
F_CARD *first_card = DECK_TO_CARD(deck);
F_CARD *last_card = DECK_TO_CARD(deck + 1);
CELL here = data_heap->generations[gen].here;
u32 *quad_ptr;
u32 quad_mask = mask | (mask << 8) | (mask << 16) | (mask << 24);
for(quad_ptr = (u32 *)first_card; quad_ptr < (u32 *)last_card; quad_ptr++)
{
if(*quad_ptr & quad_mask)
{
F_CARD *ptr = (F_CARD *)quad_ptr;
int card;
for(card = 0; card < 4; card++)
{
if(ptr[card] & mask)
{
copy_card(&ptr[card],gen,here);
ptr[card] &= ~unmask;
}
}
}
}
decks_scanned++;
}
/* Copy all newspace objects referenced from marked cards to the destination */
void copy_gen_cards(CELL gen)
{
F_DECK *first_deck = ADDR_TO_DECK(data_heap->generations[gen].start);
F_DECK *last_deck = ADDR_TO_DECK(data_heap->generations[gen].end);
F_CARD mask, unmask;
/* if we are collecting the nursery, we care about old->nursery pointers
but not old->aging pointers */
if(collecting_gen == NURSERY)
{
mask = CARD_POINTS_TO_NURSERY;
/* after the collection, no old->nursery pointers remain
anywhere, but old->aging pointers might remain in tenured
space */
if(gen == TENURED)
unmask = CARD_POINTS_TO_NURSERY;
/* after the collection, all cards in aging space can be
cleared */
else if(HAVE_AGING_P && gen == AGING)
unmask = CARD_MARK_MASK;
else
{
critical_error("bug in copy_gen_cards",gen);
return;
}
}
/* if we are collecting aging space into tenured space, we care about
all old->nursery and old->aging pointers. no old->aging pointers can
remain */
else if(HAVE_AGING_P && collecting_gen == AGING)
{
if(collecting_aging_again)
{
mask = CARD_POINTS_TO_AGING;
unmask = CARD_MARK_MASK;
}
/* after we collect aging space into the aging semispace, no
old->nursery pointers remain but tenured space might still have
pointers to aging space. */
else
{
mask = CARD_POINTS_TO_AGING;
unmask = CARD_POINTS_TO_NURSERY;
}
}
else
{
critical_error("bug in copy_gen_cards",gen);
return;
}
F_DECK *ptr;
for(ptr = first_deck; ptr < last_deck; ptr++)
{
if(*ptr & mask)
{
copy_card_deck(ptr,gen,mask,unmask);
*ptr &= ~unmask;
}
}
}
/* Scan cards in all generations older than the one being collected, copying
old->new references */
void copy_cards(void)
{
int i;
for(i = collecting_gen + 1; i < data_heap->gen_count; i++)
copy_gen_cards(i);
}
/* Copy all tagged pointers in a range of memory */
void copy_stack_elements(F_SEGMENT *region, CELL top)
{
CELL ptr = region->start;
for(; ptr <= top; ptr += CELLS)
copy_handle((CELL*)ptr);
}
void copy_stack_frame_step(F_STACK_FRAME *frame)
{
mark_code_block(frame_code(frame));
}
void copy_callstack_roots(F_CONTEXT *stacks)
{
if(collecting_gen == TENURED)
{
CELL top = (CELL)stacks->callstack_top;
CELL bottom = (CELL)stacks->callstack_bottom;
iterate_callstack(top,bottom,copy_stack_frame_step);
}
}
void copy_registered_locals(void)
{
CELL ptr = gc_locals_region->start;
for(; ptr <= gc_locals; ptr += CELLS)
copy_handle(*(CELL **)ptr);
}
/* Copy roots over at the start of GC, namely various constants, stacks,
the user environment and extra roots registered with REGISTER_ROOT */
void copy_roots(void)
{
copy_handle(&T);
copy_handle(&bignum_zero);
copy_handle(&bignum_pos_one);
copy_handle(&bignum_neg_one);
copy_registered_locals();
copy_stack_elements(extra_roots_region,extra_roots);
save_stacks();
F_CONTEXT *stacks = stack_chain;
while(stacks)
{
copy_stack_elements(stacks->datastack_region,stacks->datastack);
copy_stack_elements(stacks->retainstack_region,stacks->retainstack);
copy_handle(&stacks->catchstack_save);
copy_handle(&stacks->current_callback_save);
copy_callstack_roots(stacks);
stacks = stacks->next;
}
int i;
for(i = 0; i < USER_ENV; i++)
copy_handle(&userenv[i]);
}
/* Given a pointer to oldspace, copy it to newspace */
INLINE void *copy_untagged_object(void *pointer, CELL size)
{
if(newspace->here + size >= newspace->end)
longjmp(gc_jmp,1);
allot_barrier(newspace->here);
void *newpointer = allot_zone(newspace,size);
F_GC_STATS *s = &gc_stats[collecting_gen];
s->object_count++;
s->bytes_copied += size;
memcpy(newpointer,pointer,size);
return newpointer;
}
INLINE void forward_object(CELL pointer, CELL newpointer)
{
if(pointer != newpointer)
put(UNTAG(pointer),RETAG(newpointer,GC_COLLECTED));
}
INLINE CELL copy_object_impl(CELL pointer)
{
CELL newpointer = (CELL)copy_untagged_object(
(void*)UNTAG(pointer),
object_size(pointer));
forward_object(pointer,newpointer);
return newpointer;
}
/* Follow a chain of forwarding pointers */
CELL resolve_forwarding(CELL untagged, CELL tag)
{
CELL header = get(untagged);
/* another forwarding pointer */
if(TAG(header) == GC_COLLECTED)
return resolve_forwarding(UNTAG(header),tag);
/* we've found the destination */
else
{
CELL pointer = RETAG(untagged,tag);
if(should_copy(untagged))
pointer = RETAG(copy_object_impl(pointer),tag);
return pointer;
}
}
/* Given a pointer to a tagged pointer to oldspace, copy it to newspace.
If the object has already been copied, return the forwarding
pointer address without copying anything; otherwise, install
a new forwarding pointer. */
INLINE CELL copy_object(CELL pointer)
{
CELL tag = TAG(pointer);
CELL header = get(UNTAG(pointer));
if(TAG(header) == GC_COLLECTED)
return resolve_forwarding(UNTAG(header),tag);
else
return RETAG(copy_object_impl(pointer),tag);
}
void copy_handle(CELL *handle)
{
CELL pointer = *handle;
if(!immediate_p(pointer) && should_copy(pointer))
*handle = copy_object(pointer);
}
/* The number of cells from the start of the object which should be scanned by
the GC. Some types have a binary payload at the end (string, word, DLL) which
we ignore. */
CELL binary_payload_start(CELL pointer)
{
F_TUPLE *tuple;
F_TUPLE_LAYOUT *layout;
switch(untag_header(get(pointer)))
{
/* these objects do not refer to other objects at all */
case FLOAT_TYPE:
case BYTE_ARRAY_TYPE:
case BIGNUM_TYPE:
case CALLSTACK_TYPE:
return 0;
/* these objects have some binary data at the end */
case WORD_TYPE:
return sizeof(F_WORD) - CELLS * 3;
case ALIEN_TYPE:
return CELLS * 3;
case DLL_TYPE:
return CELLS * 2;
case QUOTATION_TYPE:
return sizeof(F_QUOTATION) - CELLS * 2;
case STRING_TYPE:
return sizeof(F_STRING);
/* everything else consists entirely of pointers */
case ARRAY_TYPE:
return array_size(array_capacity((F_ARRAY*)pointer));
case TUPLE_TYPE:
tuple = untag_object(pointer);
layout = untag_object(tuple->layout);
return tuple_size(layout);
case RATIO_TYPE:
return sizeof(F_RATIO);
case COMPLEX_TYPE:
return sizeof(F_COMPLEX);
case WRAPPER_TYPE:
return sizeof(F_WRAPPER);
default:
critical_error("Invalid header",pointer);
return -1; /* can't happen */
}
}
void do_code_slots(CELL scan)
{
F_WORD *word;
F_QUOTATION *quot;
F_CALLSTACK *stack;
switch(object_type(scan))
{
case WORD_TYPE:
word = (F_WORD *)scan;
mark_code_block(word->code);
if(word->profiling)
mark_code_block(word->profiling);
break;
case QUOTATION_TYPE:
quot = (F_QUOTATION *)scan;
if(quot->compiledp != F)
mark_code_block(quot->code);
break;
case CALLSTACK_TYPE:
stack = (F_CALLSTACK *)scan;
iterate_callstack_object(stack,copy_stack_frame_step);
break;
}
}
CELL copy_next_from_nursery(CELL scan)
{
CELL *obj = (CELL *)scan;
CELL *end = (CELL *)(scan + binary_payload_start(scan));
if(obj != end)
{
obj++;
CELL nursery_start = nursery.start;
CELL nursery_end = nursery.end;
for(; obj < end; obj++)
{
CELL pointer = *obj;
if(!immediate_p(pointer)
&& (pointer >= nursery_start && pointer < nursery_end))
*obj = copy_object(pointer);
}
}
return scan + untagged_object_size(scan);
}
CELL copy_next_from_aging(CELL scan)
{
CELL *obj = (CELL *)scan;
CELL *end = (CELL *)(scan + binary_payload_start(scan));
if(obj != end)
{
obj++;
CELL tenured_start = data_heap->generations[TENURED].start;
CELL tenured_end = data_heap->generations[TENURED].end;
CELL newspace_start = newspace->start;
CELL newspace_end = newspace->end;
for(; obj < end; obj++)
{
CELL pointer = *obj;
if(!immediate_p(pointer)
&& !(pointer >= newspace_start && pointer < newspace_end)
&& !(pointer >= tenured_start && pointer < tenured_end))
*obj = copy_object(pointer);
}
}
return scan + untagged_object_size(scan);
}
CELL copy_next_from_tenured(CELL scan)
{
CELL *obj = (CELL *)scan;
CELL *end = (CELL *)(scan + binary_payload_start(scan));
if(obj != end)
{
obj++;
CELL newspace_start = newspace->start;
CELL newspace_end = newspace->end;
for(; obj < end; obj++)
{
CELL pointer = *obj;
if(!immediate_p(pointer) && !(pointer >= newspace_start && pointer < newspace_end))
*obj = copy_object(pointer);
}
}
do_code_slots(scan);
return scan + untagged_object_size(scan);
}
void copy_reachable_objects(CELL scan, CELL *end)
{
if(HAVE_NURSERY_P && collecting_gen == NURSERY)
{
while(scan < *end)
scan = copy_next_from_nursery(scan);
}
else if(HAVE_AGING_P && collecting_gen == AGING)
{
while(scan < *end)
scan = copy_next_from_aging(scan);
}
else if(collecting_gen == TENURED)
{
while(scan < *end)
scan = copy_next_from_tenured(scan);
}
}
INLINE void reset_generation(CELL i)
{
F_ZONE *z = (i == NURSERY ? &nursery : &data_heap->generations[i]);
z->here = z->start;
if(secure_gc)
memset((void*)z->start,69,z->size);
}
/* After garbage collection, any generations which are now empty need to have
their allocation pointers and cards reset. */
void reset_generations(CELL from, CELL to)
{
CELL i;
for(i = from; i <= to; i++)
reset_generation(i);
clear_cards(from,to);
clear_decks(from,to);
clear_allot_markers(from,to);
}
/* Prepare to start copying reachable objects into an unused zone */
void begin_gc(CELL requested_bytes)
{
if(growing_data_heap)
{
if(collecting_gen != TENURED)
critical_error("Invalid parameters to begin_gc",0);
old_data_heap = data_heap;
set_data_heap(grow_data_heap(old_data_heap,requested_bytes));
newspace = &data_heap->generations[TENURED];
}
else if(collecting_accumulation_gen_p())
{
/* when collecting one of these generations, rotate it
with the semispace */
F_ZONE z = data_heap->generations[collecting_gen];
data_heap->generations[collecting_gen] = data_heap->semispaces[collecting_gen];
data_heap->semispaces[collecting_gen] = z;
reset_generation(collecting_gen);
newspace = &data_heap->generations[collecting_gen];
clear_cards(collecting_gen,collecting_gen);
clear_decks(collecting_gen,collecting_gen);
clear_allot_markers(collecting_gen,collecting_gen);
}
else
{
/* when collecting a younger generation, we copy
reachable objects to the next oldest generation,
so we set the newspace so the next generation. */
newspace = &data_heap->generations[collecting_gen + 1];
}
}
void end_gc(CELL gc_elapsed)
{
F_GC_STATS *s = &gc_stats[collecting_gen];
s->collections++;
s->gc_time += gc_elapsed;
if(s->max_gc_time < gc_elapsed)
s->max_gc_time = gc_elapsed;
if(growing_data_heap)
{
dealloc_data_heap(old_data_heap);
old_data_heap = NULL;
growing_data_heap = false;
}
if(collecting_accumulation_gen_p())
{
/* all younger generations except are now empty.
if collecting_gen == NURSERY here, we only have 1 generation;
old-school Cheney collector */
if(collecting_gen != NURSERY)
reset_generations(NURSERY,collecting_gen - 1);
}
else if(HAVE_NURSERY_P && collecting_gen == NURSERY)
{
nursery.here = nursery.start;
}
else
{
/* all generations up to and including the one
collected are now empty */
reset_generations(NURSERY,collecting_gen);
}
if(collecting_gen == TENURED)
{
/* now that all reachable code blocks have been marked,
deallocate the rest */
free_unmarked(&code_heap);
}
collecting_aging_again = false;
}
/* Collect gen and all younger generations.
If growing_data_heap_ is true, we must grow the data heap to such a size that
an allocation of requested_bytes won't fail */
void garbage_collection(CELL gen,
bool growing_data_heap_,
CELL requested_bytes)
{
if(gc_off)
{
critical_error("GC disabled",gen);
return;
}
s64 start = current_micros();
performing_gc = true;
growing_data_heap = growing_data_heap_;
collecting_gen = gen;
/* we come back here if a generation is full */
if(setjmp(gc_jmp))
{
/* We have no older generations we can try collecting, so we
resort to growing the data heap */
if(collecting_gen == TENURED)
{
growing_data_heap = true;
/* see the comment in unmark_marked() */
unmark_marked(&code_heap);
}
/* we try collecting AGING space twice before going on to
collect TENURED */
else if(HAVE_AGING_P
&& collecting_gen == AGING
&& !collecting_aging_again)
{
collecting_aging_again = true;
}
/* Collect the next oldest generation */
else
{
collecting_gen++;
}
}
begin_gc(requested_bytes);
/* initialize chase pointer */
CELL scan = newspace->here;
/* collect objects referenced from stacks and environment */
copy_roots();
/* collect objects referenced from older generations */
copy_cards();
/* do some tracing */
copy_reachable_objects(scan,&newspace->here);
/* don't scan code heap unless it has pointers to this
generation or younger */
if(collecting_gen >= last_code_heap_scan)
{
code_heap_scans++;
if(collecting_gen == TENURED)
update_code_heap_roots();
else
copy_code_heap_roots();
if(collecting_accumulation_gen_p())
last_code_heap_scan = collecting_gen;
else
last_code_heap_scan = collecting_gen + 1;
}
CELL gc_elapsed = (current_micros() - start);
end_gc(gc_elapsed);
performing_gc = false;
}
void gc(void)
{
garbage_collection(TENURED,false,0);
}
void minor_gc(void)
{
garbage_collection(NURSERY,false,0);
}
void primitive_gc(void)
{
gc();
}
void primitive_gc_stats(void)
{
GROWABLE_ARRAY(stats);
CELL i;
u64 total_gc_time = 0;
for(i = 0; i < MAX_GEN_COUNT; i++)
{
F_GC_STATS *s = &gc_stats[i];
GROWABLE_ARRAY_ADD(stats,allot_cell(s->collections));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(s->gc_time)));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(s->max_gc_time)));
GROWABLE_ARRAY_ADD(stats,allot_cell(s->collections == 0 ? 0 : s->gc_time / s->collections));
GROWABLE_ARRAY_ADD(stats,allot_cell(s->object_count));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(s->bytes_copied)));
total_gc_time += s->gc_time;
}
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(total_gc_time)));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(cards_scanned)));
GROWABLE_ARRAY_ADD(stats,tag_bignum(long_long_to_bignum(decks_scanned)));
GROWABLE_ARRAY_ADD(stats,allot_cell(code_heap_scans));
GROWABLE_ARRAY_TRIM(stats);
dpush(stats);
}
void primitive_gc_reset(void)
{
gc_reset();
}
void primitive_become(void)
{
F_ARRAY *new_objects = untag_array(dpop());
F_ARRAY *old_objects = untag_array(dpop());
CELL capacity = array_capacity(new_objects);
if(capacity != array_capacity(old_objects))
critical_error("bad parameters to become",0);
CELL i;
for(i = 0; i < capacity; i++)
{
CELL old_obj = array_nth(old_objects,i);
CELL new_obj = array_nth(new_objects,i);
forward_object(old_obj,new_obj);
}
gc();
compile_all_words();
}
CELL find_all_words(void)
{
GROWABLE_ARRAY(words);
begin_scan();
CELL obj;
while((obj = next_object()) != F)
{
if(type_of(obj) == WORD_TYPE)
GROWABLE_ARRAY_ADD(words,obj);
}
/* End heap scan */
gc_off = false;
GROWABLE_ARRAY_TRIM(words);
return words;
}