factor/library/math/quaternions.factor

59 lines
1.4 KiB
Factor

! Copyright (C) 2005 Slava Pestov.
! See http://factor.sf.net/license.txt for BSD license.
! Everybody's favorite non-commutative skew field, the
! quaternions! Represented as pairs of complex numbers,
! that is, (a+bi)+(c+di)j.
USING: arrays kernel math sequences ;
IN: math-internals
: 2q [ first2 ] 2apply ;
: q*a 2q swapd ** >r * r> - ;
: q*b 2q >r ** swap r> * + ;
IN: math
: quaternion? ( seq -- ? )
dup length 2 = [
first2 [ number? ] 2apply and
] [
2drop f
] if ;
: q* ( u v -- u*v ) [ q*a ] 2keep q*b 2array ;
: qconjugate ( u -- u' ) first2 neg >r conjugate r> 2array ;
: q/ ( u v -- u/v ) [ qconjugate q* ] keep norm-sq v/n ;
: q*n ( q n -- q )
#! Note: you will get the wrong result if you try to
#! multiply a quaternion by a complex number on the right
#! using v*n. Use this word instead. Note that v*n with a
#! quaternion and a real is okay.
conjugate v*n ;
: c>q ( c -- q )
#! Turn a complex number into a quaternion.
0 2array ;
! Zero
: q0 Q{ 0 0 0 0 }Q ;
! Units
: q1 Q{ 1 0 0 0 }Q ;
: qi Q{ 0 1 0 0 }Q ;
: qj Q{ 0 0 1 0 }Q ;
: qk Q{ 0 0 0 1 }Q ;
! Euler angles -- see
! http://www.mathworks.com/access/helpdesk/help/toolbox/aeroblks/euleranglestoquaternions.html
: (euler) ( theta unit -- q )
>r -0.5 * dup cos c>q swap sin r> n*q v- ;
: euler ( phi theta psi -- q )
qk (euler) >r qj (euler) >r qi (euler) r> q* r> q* ;