factor/extra/math/miller-rabin/miller-rabin.factor

83 lines
2.0 KiB
Factor
Executable File

USING: combinators combinators.lib io locals kernel math
math.functions math.ranges namespaces random sequences
hashtables sets ;
IN: math.miller-rabin
SYMBOL: a
SYMBOL: n
SYMBOL: r
SYMBOL: s
SYMBOL: count
SYMBOL: trials
: >even ( n -- int )
dup even? [ 1- ] unless ; foldable
: >odd ( n -- int )
dup even? [ 1+ ] when ; foldable
: next-odd ( m -- n )
dup even? [ 1+ ] [ 2 + ] if ;
TUPLE: positive-even-expected n ;
: (factor-2s) ( r s -- r s )
dup even? [ -1 shift >r 1+ r> (factor-2s) ] when ;
: factor-2s ( n -- r s )
#! factor an integer into s * 2^r
0 swap (factor-2s) ;
:: (miller-rabin) ( n prime?! -- ? )
n 1- factor-2s s set r set
trials get [
n 1- [1,b] random a set
a get s get n ^mod 1 = [
0 count set
r get [
2^ s get * a get swap n ^mod n - -1 = [
count [ 1+ ] change
r get +
] when
] each
count get zero? [
f prime?!
trials get +
] when
] unless
drop
] each prime? ;
TUPLE: miller-rabin-bounds ;
: miller-rabin* ( n numtrials -- ? )
over {
{ [ dup 1 <= ] [ 3drop f ] }
{ [ dup 2 = ] [ 3drop t ] }
{ [ dup even? ] [ 3drop f ] }
[ [ drop trials set t (miller-rabin) ] with-scope ]
} cond ;
: miller-rabin ( n -- ? ) 10 miller-rabin* ;
: next-prime ( n -- p )
next-odd dup miller-rabin [ next-prime ] unless ;
: random-prime ( numbits -- p )
random-bits next-prime ;
: (find-relative-prime) ( n guess -- p )
2dup gcd nip 1 > [ 2 + (find-relative-prime) ] [ nip ] if ;
: find-relative-prime* ( n guess -- p )
#! find a prime relative to n with initial guess
>odd (find-relative-prime) ;
: find-relative-prime ( n -- p )
dup random find-relative-prime* ;
: unique-primes ( numbits n -- seq )
#! generate two primes
over 5 < [ "not enough primes below 5 bits" throw ] when
[ [ drop random-prime ] with map ] [ all-unique? ] generate ;