factor/vm/contexts.cpp

293 lines
7.9 KiB
C++

#include "master.hpp"
namespace factor {
context::context(cell ds_size, cell rs_size, cell cs_size)
: callstack_top(0),
callstack_bottom(0),
datastack(0),
retainstack(0),
callstack_save(0),
datastack_seg(new segment(ds_size, false)),
retainstack_seg(new segment(rs_size, false)),
callstack_seg(new segment(cs_size, false)) {
reset();
}
void context::reset_datastack() {
datastack = datastack_seg->start - sizeof(cell);
fill_stack_seg(datastack, datastack_seg, 0x11111111);
}
void context::reset_retainstack() {
retainstack = retainstack_seg->start - sizeof(cell);
fill_stack_seg(retainstack, retainstack_seg, 0x22222222);
}
void context::reset_callstack() {
callstack_top = callstack_bottom = CALLSTACK_BOTTOM(this);
}
void context::reset_context_objects() {
memset_cell(context_objects, false_object,
context_object_count * sizeof(cell));
}
void context::fill_stack_seg(cell top_ptr, segment* seg, cell pattern) {
#ifdef FACTOR_DEBUG
cell clear_start = top_ptr + sizeof(cell);
cell clear_size = seg->end - clear_start;
memset_cell((void*)clear_start, pattern, clear_size);
#endif
}
vm_error_type context::address_to_error(cell addr) {
if (datastack_seg->underflow_p(addr))
return ERROR_DATASTACK_UNDERFLOW;
if (datastack_seg->overflow_p(addr))
return ERROR_DATASTACK_OVERFLOW;
if (retainstack_seg->underflow_p(addr))
return ERROR_RETAINSTACK_UNDERFLOW;
if (retainstack_seg->overflow_p(addr))
return ERROR_RETAINSTACK_OVERFLOW;
// These are flipped because the callstack grows downwards.
if (callstack_seg->underflow_p(addr))
return ERROR_CALLSTACK_OVERFLOW;
if (callstack_seg->overflow_p(addr))
return ERROR_CALLSTACK_UNDERFLOW;
return ERROR_MEMORY;
}
void context::reset() {
reset_datastack();
reset_retainstack();
reset_callstack();
reset_context_objects();
}
void context::fix_stacks() {
if (datastack + sizeof(cell) < datastack_seg->start ||
datastack + stack_reserved >= datastack_seg->end)
reset_datastack();
if (retainstack + sizeof(cell) < retainstack_seg->start ||
retainstack + stack_reserved >= retainstack_seg->end)
reset_retainstack();
}
context::~context() {
delete datastack_seg;
delete retainstack_seg;
delete callstack_seg;
}
// called on startup
// Allocates memory (new_context())
void factor_vm::init_contexts(cell datastack_size_, cell retainstack_size_,
cell callstack_size_) {
datastack_size = datastack_size_;
retainstack_size = retainstack_size_;
callstack_size = callstack_size_;
ctx = NULL;
spare_ctx = new_context();
}
context* factor_vm::new_context() {
context* new_context;
if (unused_contexts.empty()) {
new_context = new context(datastack_size, retainstack_size, callstack_size);
} else {
new_context = unused_contexts.back();
unused_contexts.pop_back();
}
new_context->reset();
active_contexts.insert(new_context);
return new_context;
}
// Allocates memory
void factor_vm::init_context(context* ctx) {
ctx->context_objects[OBJ_CONTEXT] = allot_alien((cell)ctx);
}
// Allocates memory (init_context(), but not parent->new_context()
VM_C_API context* new_context(factor_vm* parent) {
context* new_context = parent->new_context();
parent->init_context(new_context);
return new_context;
}
void factor_vm::delete_context() {
unused_contexts.push_back(ctx);
active_contexts.erase(ctx);
while (unused_contexts.size() > 10) {
context* stale_context = unused_contexts.front();
unused_contexts.pop_front();
delete stale_context;
}
}
VM_C_API void delete_context(factor_vm* parent) {
parent->delete_context();
}
// Allocates memory (init_context())
VM_C_API void reset_context(factor_vm* parent) {
// The function is used by (start-context-and-delete) which expects
// the top two datastack items to be preserved after the context has
// been resetted.
context* ctx = parent->ctx;
cell arg1 = ctx->pop();
cell arg2 = ctx->pop();
ctx->reset();
ctx->push(arg2);
ctx->push(arg1);
parent->init_context(ctx);
}
// Allocates memory
cell factor_vm::begin_callback(cell quot_) {
data_root<object> quot(quot_, this);
ctx->reset();
spare_ctx = new_context();
callback_ids.push_back(callback_id++);
init_context(ctx);
return quot.value();
}
// Allocates memory
cell begin_callback(factor_vm* parent, cell quot) {
return parent->begin_callback(quot);
}
void factor_vm::end_callback() {
callback_ids.pop_back();
delete_context();
}
void end_callback(factor_vm* parent) { parent->end_callback(); }
void factor_vm::primitive_current_callback() {
ctx->push(tag_fixnum(callback_ids.back()));
}
void factor_vm::primitive_context_object() {
fixnum n = untag_fixnum(ctx->peek());
ctx->replace(ctx->context_objects[n]);
}
void factor_vm::primitive_set_context_object() {
fixnum n = untag_fixnum(ctx->pop());
cell value = ctx->pop();
ctx->context_objects[n] = value;
}
void factor_vm::primitive_context_object_for() {
context* other_ctx = (context*)pinned_alien_offset(ctx->pop());
fixnum n = untag_fixnum(ctx->peek());
ctx->replace(other_ctx->context_objects[n]);
}
// Allocates memory
cell factor_vm::stack_to_array(cell bottom, cell top, vm_error_type error) {
fixnum depth = (fixnum)(top - bottom + sizeof(cell));
if (depth < 0) {
general_error(error, false_object, false_object);
}
array* a = allot_uninitialized_array<array>(depth / sizeof(cell));
memcpy(a + 1, (void*)bottom, depth);
return tag<array>(a);
}
// Allocates memory
cell factor_vm::datastack_to_array(context* ctx) {
return stack_to_array(ctx->datastack_seg->start,
ctx->datastack,
ERROR_DATASTACK_UNDERFLOW);
}
// Allocates memory
void factor_vm::primitive_datastack_for() {
data_root<alien> alien_ctx(ctx->pop(), this);
context* other_ctx = (context*)pinned_alien_offset(alien_ctx.value());
cell array = datastack_to_array(other_ctx);
ctx->push(array);
}
// Allocates memory
cell factor_vm::retainstack_to_array(context* ctx) {
return stack_to_array(ctx->retainstack_seg->start,
ctx->retainstack,
ERROR_RETAINSTACK_UNDERFLOW);
}
// Allocates memory
void factor_vm::primitive_retainstack_for() {
context* other_ctx = (context*)pinned_alien_offset(ctx->peek());
ctx->replace(retainstack_to_array(other_ctx));
}
// returns pointer to top of stack
cell factor_vm::array_to_stack(array* array, cell bottom) {
cell depth = array_capacity(array) * sizeof(cell);
memcpy((void*)bottom, array + 1, depth);
return bottom + depth - sizeof(cell);
}
void factor_vm::primitive_set_datastack() {
array* arr = untag_check<array>(ctx->pop());
ctx->datastack = array_to_stack(arr, ctx->datastack_seg->start);
}
void factor_vm::primitive_set_retainstack() {
array* arr = untag_check<array>(ctx->pop());
ctx->retainstack = array_to_stack(arr, ctx->retainstack_seg->start);
}
// Used to implement call(
void factor_vm::primitive_check_datastack() {
fixnum out = to_fixnum(ctx->pop());
fixnum in = to_fixnum(ctx->pop());
fixnum height = out - in;
array* saved_datastack = untag_check<array>(ctx->pop());
fixnum saved_height = array_capacity(saved_datastack);
fixnum current_height =
(ctx->datastack - ctx->datastack_seg->start + sizeof(cell)) /
sizeof(cell);
if (current_height - height != saved_height)
ctx->push(false_object);
else {
cell* ds_bot = (cell*)ctx->datastack_seg->start;
for (fixnum i = 0; i < saved_height - in; i++) {
if (ds_bot[i] != array_nth(saved_datastack, i)) {
ctx->push(false_object);
return;
}
}
ctx->push(special_objects[OBJ_CANONICAL_TRUE]);
}
}
void factor_vm::primitive_load_locals() {
fixnum count = untag_fixnum(ctx->pop());
memcpy((cell*)(ctx->retainstack + sizeof(cell)),
(cell*)(ctx->datastack - sizeof(cell) * (count - 1)),
sizeof(cell) * count);
ctx->datastack -= sizeof(cell) * count;
ctx->retainstack += sizeof(cell) * count;
}
}