84 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
namespace factor {
 | 
						|
 | 
						|
// It is up to the caller to fill in the object's fields in a
 | 
						|
// meaningful fashion!
 | 
						|
 | 
						|
// Allocates memory
 | 
						|
inline code_block* factor_vm::allot_code_block(cell size,
 | 
						|
                                               code_block_type type) {
 | 
						|
  cell block_size = size + sizeof(code_block);
 | 
						|
  code_block* block = code->allocator->allot(block_size);
 | 
						|
 | 
						|
  if (block == NULL) {
 | 
						|
    // If allocation failed, do a full GC and compact the code heap.
 | 
						|
    // A full GC that occurs as a result of the data heap filling up does not
 | 
						|
    // trigger a compaction. This setup ensures that most GCs do not compact
 | 
						|
    // the code heap, but if the code fills up, it probably means it will be
 | 
						|
    // fragmented after GC anyway, so its best to compact.
 | 
						|
    primitive_compact_gc();
 | 
						|
    block = code->allocator->allot(block_size);
 | 
						|
 | 
						|
    // Insufficient room even after code GC, give up
 | 
						|
    if (block == NULL) {
 | 
						|
      std::cout << "Code heap used: " << code->allocator->occupied_space()
 | 
						|
                << "\n";
 | 
						|
      std::cout << "Code heap free: " << code->allocator->free_space << "\n";
 | 
						|
      std::cout << "Request       : " << block_size << "\n";
 | 
						|
      fatal_error("Out of memory in allot_code_block", 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // next time we do a minor GC, we have to trace this code block, since
 | 
						|
  // the fields of the code_block struct might point into nursery or aging
 | 
						|
  this->code->write_barrier(block);
 | 
						|
 | 
						|
  block->set_type(type);
 | 
						|
  return block;
 | 
						|
}
 | 
						|
 | 
						|
// Allocates memory
 | 
						|
inline object* factor_vm::allot_large_object(cell type, cell size) {
 | 
						|
  // If tenured space does not have enough room, collect and compact
 | 
						|
  cell required_free = size + data->high_water_mark();
 | 
						|
  if (!data->tenured->can_allot_p(required_free)) {
 | 
						|
    primitive_compact_gc();
 | 
						|
 | 
						|
    // If it still won't fit, grow the heap
 | 
						|
    if (!data->tenured->can_allot_p(required_free)) {
 | 
						|
      gc(COLLECT_GROWING_DATA_HEAP_OP, size);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  object* obj = data->tenured->allot(size);
 | 
						|
 | 
						|
  // Allows initialization code to store old->new pointers
 | 
						|
  // without hitting the write barrier in the common case of
 | 
						|
  // a nursery allocation
 | 
						|
  write_barrier(obj, size);
 | 
						|
 | 
						|
  obj->initialize(type);
 | 
						|
  return obj;
 | 
						|
}
 | 
						|
 | 
						|
// Allocates memory
 | 
						|
inline object* factor_vm::allot_object(cell type, cell size) {
 | 
						|
  FACTOR_ASSERT(!current_gc);
 | 
						|
 | 
						|
  bump_allocator *nursery = data->nursery;
 | 
						|
 | 
						|
  // If the object is bigger than the nursery, allocate it in tenured space
 | 
						|
  if (size >= nursery->size)
 | 
						|
    return allot_large_object(type, size);
 | 
						|
 | 
						|
  // If the object is smaller than the nursery, allocate it in the nursery,
 | 
						|
  // after a GC if needed
 | 
						|
  if (nursery->here + size > nursery->end)
 | 
						|
    primitive_minor_gc();
 | 
						|
 | 
						|
  object* obj = nursery->allot(size);
 | 
						|
  obj->initialize(type);
 | 
						|
 | 
						|
  return obj;
 | 
						|
}
 | 
						|
 | 
						|
}
 |