476 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
			
		
		
	
	
			476 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
| #include "master.h"
 | |
| 
 | |
| /* This malloc-style heap code is reasonably generic. Maybe in the future, it
 | |
| will be used for the data heap too, if we ever get incremental
 | |
| mark/sweep/compact GC. */
 | |
| void new_heap(F_HEAP *heap, CELL size)
 | |
| {
 | |
| 	heap->segment = alloc_segment(align_page(size));
 | |
| 	if(!heap->segment)
 | |
| 		fatal_error("Out of memory in new_heap",size);
 | |
| 	heap->free_list = NULL;
 | |
| }
 | |
| 
 | |
| /* Allocate a code heap during startup */
 | |
| void init_code_heap(CELL size)
 | |
| {
 | |
| 	new_heap(&code_heap,size);
 | |
| }
 | |
| 
 | |
| bool in_code_heap_p(CELL ptr)
 | |
| {
 | |
| 	return (ptr >= code_heap.segment->start
 | |
| 		&& ptr <= code_heap.segment->end);
 | |
| }
 | |
| 
 | |
| /* If there is no previous block, next_free becomes the head of the free list,
 | |
| else its linked in */
 | |
| INLINE void update_free_list(F_HEAP *heap, F_BLOCK *prev, F_BLOCK *next_free)
 | |
| {
 | |
| 	if(prev)
 | |
| 		prev->next_free = next_free;
 | |
| 	else
 | |
| 		heap->free_list = next_free;
 | |
| }
 | |
| 
 | |
| /* Called after reading the code heap from the image file, and after code GC.
 | |
| 
 | |
| In the former case, we must add a large free block from compiling.base + size to
 | |
| compiling.limit. */
 | |
| void build_free_list(F_HEAP *heap, CELL size)
 | |
| {
 | |
| 	F_BLOCK *prev = NULL;
 | |
| 	F_BLOCK *prev_free = NULL;
 | |
| 	F_BLOCK *scan = first_block(heap);
 | |
| 	F_BLOCK *end = (F_BLOCK *)(heap->segment->start + size);
 | |
| 
 | |
| 	/* Add all free blocks to the free list */
 | |
| 	while(scan && scan < end)
 | |
| 	{
 | |
| 		switch(scan->status)
 | |
| 		{
 | |
| 		case B_FREE:
 | |
| 			update_free_list(heap,prev_free,scan);
 | |
| 			prev_free = scan;
 | |
| 			break;
 | |
| 		case B_ALLOCATED:
 | |
| 			break;
 | |
| 		default:
 | |
| 			critical_error("Invalid scan->status",(CELL)scan);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		prev = scan;
 | |
| 		scan = next_block(heap,scan);
 | |
| 	}
 | |
| 
 | |
| 	/* If there is room at the end of the heap, add a free block. This
 | |
| 	branch is only taken after loading a new image, not after code GC */
 | |
| 	if((CELL)(end + 1) <= heap->segment->end)
 | |
| 	{
 | |
| 		end->status = B_FREE;
 | |
| 		end->next_free = NULL;
 | |
| 		end->size = heap->segment->end - (CELL)end;
 | |
| 
 | |
| 		/* add final free block */
 | |
| 		update_free_list(heap,prev_free,end);
 | |
| 	}
 | |
| 	/* This branch is taken if the newly loaded image fits exactly, or
 | |
| 	after code GC */
 | |
| 	else
 | |
| 	{
 | |
| 		/* even if there's no room at the end of the heap for a new
 | |
| 		free block, we might have to jigger it up by a few bytes in
 | |
| 		case prev + prev->size */
 | |
| 		if(prev)
 | |
| 			prev->size = heap->segment->end - (CELL)prev;
 | |
| 
 | |
| 		/* this is the last free block */
 | |
| 		update_free_list(heap,prev_free,NULL);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Allocate a block of memory from the mark and sweep GC heap */
 | |
| CELL heap_allot(F_HEAP *heap, CELL size)
 | |
| {
 | |
| 	F_BLOCK *prev = NULL;
 | |
| 	F_BLOCK *scan = heap->free_list;
 | |
| 
 | |
| 	size = (size + 31) & ~31;
 | |
| 
 | |
| 	while(scan)
 | |
| 	{
 | |
| 		CELL this_size = scan->size - sizeof(F_BLOCK);
 | |
| 
 | |
| 		if(scan->status != B_FREE)
 | |
| 			critical_error("Invalid block in free list",(CELL)scan);
 | |
| 
 | |
| 		if(this_size < size)
 | |
| 		{
 | |
| 			prev = scan;
 | |
| 			scan = scan->next_free;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* we found a candidate block */
 | |
| 		F_BLOCK *next_free;
 | |
| 
 | |
| 		if(this_size - size <= sizeof(F_BLOCK))
 | |
| 		{
 | |
| 			/* too small to be split */
 | |
| 			next_free = scan->next_free;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			/* split the block in two */
 | |
| 			CELL new_size = size + sizeof(F_BLOCK);
 | |
| 			F_BLOCK *split = (F_BLOCK *)((CELL)scan + new_size);
 | |
| 			split->status = B_FREE;
 | |
| 			split->size = scan->size - new_size;
 | |
| 			split->next_free = scan->next_free;
 | |
| 			scan->size = new_size;
 | |
| 			next_free = split;
 | |
| 		}
 | |
| 
 | |
| 		/* update the free list */
 | |
| 		update_free_list(heap,prev,next_free);
 | |
| 
 | |
| 		/* this is our new block */
 | |
| 		scan->status = B_ALLOCATED;
 | |
| 
 | |
| 		return (CELL)(scan + 1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* If in the middle of code GC, we have to grow the heap, GC restarts from
 | |
| scratch, so we have to unmark any marked blocks. */
 | |
| void unmark_marked(F_HEAP *heap)
 | |
| {
 | |
| 	F_BLOCK *scan = first_block(heap);
 | |
| 
 | |
| 	while(scan)
 | |
| 	{
 | |
| 		if(scan->status == B_MARKED)
 | |
| 			scan->status = B_ALLOCATED;
 | |
| 
 | |
| 		scan = next_block(heap,scan);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* After code GC, all referenced code blocks have status set to B_MARKED, so any
 | |
| which are allocated and not marked can be reclaimed. */
 | |
| void free_unmarked(F_HEAP *heap)
 | |
| {
 | |
| 	F_BLOCK *prev = NULL;
 | |
| 	F_BLOCK *scan = first_block(heap);
 | |
| 
 | |
| 	while(scan)
 | |
| 	{
 | |
| 		switch(scan->status)
 | |
| 		{
 | |
| 		case B_ALLOCATED:
 | |
| 			if(prev && prev->status == B_FREE)
 | |
| 				prev->size += scan->size;
 | |
| 			else
 | |
| 			{
 | |
| 				scan->status = B_FREE;
 | |
| 				prev = scan;
 | |
| 			}
 | |
| 			break;
 | |
| 		case B_FREE:
 | |
| 			if(prev && prev->status == B_FREE)
 | |
| 				prev->size += scan->size;
 | |
| 			break;
 | |
| 		case B_MARKED:
 | |
| 			scan->status = B_ALLOCATED;
 | |
| 			prev = scan;
 | |
| 			break;
 | |
| 		default:
 | |
| 			critical_error("Invalid scan->status",(CELL)scan);
 | |
| 		}
 | |
| 
 | |
| 		scan = next_block(heap,scan);
 | |
| 	}
 | |
| 
 | |
| 	build_free_list(heap,heap->segment->size);
 | |
| }
 | |
| 
 | |
| /* Compute total sum of sizes of free blocks, and size of largest free block */
 | |
| void heap_usage(F_HEAP *heap, CELL *used, CELL *total_free, CELL *max_free)
 | |
| {
 | |
| 	*used = 0;
 | |
| 	*total_free = 0;
 | |
| 	*max_free = 0;
 | |
| 
 | |
| 	F_BLOCK *scan = first_block(heap);
 | |
| 
 | |
| 	while(scan)
 | |
| 	{
 | |
| 		switch(scan->status)
 | |
| 		{
 | |
| 		case B_ALLOCATED:
 | |
| 			*used += scan->size;
 | |
| 			break;
 | |
| 		case B_FREE:
 | |
| 			*total_free += scan->size;
 | |
| 			if(scan->size > *max_free)
 | |
| 				*max_free = scan->size;
 | |
| 			break;
 | |
| 		default:
 | |
| 			critical_error("Invalid scan->status",(CELL)scan);
 | |
| 		}
 | |
| 
 | |
| 		scan = next_block(heap,scan);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* The size of the heap, not including the last block if it's free */
 | |
| CELL heap_size(F_HEAP *heap)
 | |
| {
 | |
| 	F_BLOCK *scan = first_block(heap);
 | |
| 
 | |
| 	while(next_block(heap,scan) != NULL)
 | |
| 		scan = next_block(heap,scan);
 | |
| 
 | |
| 	/* this is the last block in the heap, and it is free */
 | |
| 	if(scan->status == B_FREE)
 | |
| 		return (CELL)scan - heap->segment->start;
 | |
| 	/* otherwise the last block is allocated */
 | |
| 	else
 | |
| 		return heap->segment->size;
 | |
| }
 | |
| 
 | |
| /* Apply a function to every code block */
 | |
| void iterate_code_heap(CODE_HEAP_ITERATOR iter)
 | |
| {
 | |
| 	F_BLOCK *scan = first_block(&code_heap);
 | |
| 
 | |
| 	while(scan)
 | |
| 	{
 | |
| 		if(scan->status != B_FREE)
 | |
| 			iterate_code_heap_step(block_to_compiled(scan),iter);
 | |
| 		scan = next_block(&code_heap,scan);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Copy all literals referenced from a code block to newspace */
 | |
| void collect_literals_step(F_COMPILED *compiled, CELL code_start, CELL literals_start)
 | |
| {
 | |
| 	CELL scan;
 | |
| 	CELL literal_end = literals_start + compiled->literals_length;
 | |
| 
 | |
| 	copy_handle(&compiled->relocation);
 | |
| 
 | |
| 	for(scan = literals_start; scan < literal_end; scan += CELLS)
 | |
| 		copy_handle((CELL*)scan);
 | |
| }
 | |
| 
 | |
| /* Copy literals referenced from all code blocks to newspace */
 | |
| void collect_literals(void)
 | |
| {
 | |
| 	iterate_code_heap(collect_literals_step);
 | |
| }
 | |
| 
 | |
| /* Mark all XTs and literals referenced from a word XT */
 | |
| void recursive_mark(F_BLOCK *block)
 | |
| {
 | |
| 	/* If already marked, do nothing */
 | |
| 	switch(block->status)
 | |
| 	{
 | |
| 	case B_MARKED:
 | |
| 		return;
 | |
| 	case B_ALLOCATED:
 | |
| 		block->status = B_MARKED;
 | |
| 		break;
 | |
| 	default:
 | |
| 		critical_error("Marking the wrong block",(CELL)block);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	F_COMPILED *compiled = block_to_compiled(block);
 | |
| 	iterate_code_heap_step(compiled,collect_literals_step);
 | |
| }
 | |
| 
 | |
| /* Push the free space and total size of the code heap */
 | |
| DEFINE_PRIMITIVE(code_room)
 | |
| {
 | |
| 	CELL used, total_free, max_free;
 | |
| 	heap_usage(&code_heap,&used,&total_free,&max_free);
 | |
| 	dpush(tag_fixnum((code_heap.segment->size) / 1024));
 | |
| 	dpush(tag_fixnum(used / 1024));
 | |
| 	dpush(tag_fixnum(total_free / 1024));
 | |
| 	dpush(tag_fixnum(max_free / 1024));
 | |
| }
 | |
| 
 | |
| /* Dump all code blocks for debugging */
 | |
| void dump_heap(F_HEAP *heap)
 | |
| {
 | |
| 	F_BLOCK *scan = first_block(heap);
 | |
| 
 | |
| 	while(scan)
 | |
| 	{
 | |
| 		char *status;
 | |
| 		switch(scan->status)
 | |
| 		{
 | |
| 		case B_FREE:
 | |
| 			status = "free";
 | |
| 			break;
 | |
| 		case B_ALLOCATED:
 | |
| 			status = "allocated";
 | |
| 			break;
 | |
| 		case B_MARKED:
 | |
| 			status = "marked";
 | |
| 			break;
 | |
| 		default:
 | |
| 			status = "invalid";
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		fprintf(stderr,"%lx %lx %s\n",(CELL)scan,scan->size,status);
 | |
| 
 | |
| 		scan = next_block(heap,scan);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Compute where each block is going to go, after compaction */
 | |
| CELL compute_heap_forwarding(F_HEAP *heap)
 | |
| {
 | |
| 	F_BLOCK *scan = first_block(heap);
 | |
| 	CELL address = (CELL)first_block(heap);
 | |
| 
 | |
| 	while(scan)
 | |
| 	{
 | |
| 		if(scan->status == B_ALLOCATED)
 | |
| 		{
 | |
| 			scan->forwarding = (F_BLOCK *)address;
 | |
| 			address += scan->size;
 | |
| 		}
 | |
| 		else if(scan->status == B_MARKED)
 | |
| 			critical_error("Why is the block marked?",0);
 | |
| 
 | |
| 		scan = next_block(heap,scan);
 | |
| 	}
 | |
| 
 | |
| 	return address - heap->segment->start;
 | |
| }
 | |
| 
 | |
| F_COMPILED *forward_xt(F_COMPILED *compiled)
 | |
| {
 | |
| 	return block_to_compiled(compiled_to_block(compiled)->forwarding);
 | |
| }
 | |
| 
 | |
| void forward_frame_xt(F_STACK_FRAME *frame)
 | |
| {
 | |
| 	CELL offset = (CELL)FRAME_RETURN_ADDRESS(frame) - (CELL)frame_code(frame);
 | |
| 	F_COMPILED *forwarded = forward_xt(frame_code(frame));
 | |
| 	frame->xt = (XT)(forwarded + 1);
 | |
| 	FRAME_RETURN_ADDRESS(frame) = (XT)((CELL)forwarded + offset);
 | |
| }
 | |
| 
 | |
| void forward_object_xts(void)
 | |
| {
 | |
| 	begin_scan();
 | |
| 
 | |
| 	CELL obj;
 | |
| 
 | |
| 	while((obj = next_object()) != F)
 | |
| 	{
 | |
| 		if(type_of(obj) == WORD_TYPE)
 | |
| 		{
 | |
| 			F_WORD *word = untag_object(obj);
 | |
| 
 | |
| 			word->code = forward_xt(word->code);
 | |
| 			if(word->profiling)
 | |
| 				word->profiling = forward_xt(word->profiling);
 | |
| 		}
 | |
| 		else if(type_of(obj) == QUOTATION_TYPE)
 | |
| 		{
 | |
| 			F_QUOTATION *quot = untag_object(obj);
 | |
| 
 | |
| 			if(quot->compiledp != F)
 | |
| 				quot->code = forward_xt(quot->code);
 | |
| 		}
 | |
| 		else if(type_of(obj) == CALLSTACK_TYPE)
 | |
| 		{
 | |
| 			F_CALLSTACK *stack = untag_object(obj);
 | |
| 			iterate_callstack_object(stack,forward_frame_xt);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* End the heap scan */
 | |
| 	gc_off = false;
 | |
| }
 | |
| 
 | |
| /* Set the XT fields now that the heap has been compacted */
 | |
| void fixup_object_xts(void)
 | |
| {
 | |
| 	begin_scan();
 | |
| 
 | |
| 	CELL obj;
 | |
| 
 | |
| 	while((obj = next_object()) != F)
 | |
| 	{
 | |
| 		if(type_of(obj) == WORD_TYPE)
 | |
| 		{
 | |
| 			F_WORD *word = untag_object(obj);
 | |
| 			update_word_xt(word);
 | |
| 		}
 | |
| 		else if(type_of(obj) == QUOTATION_TYPE)
 | |
| 		{
 | |
| 			F_QUOTATION *quot = untag_object(obj);
 | |
| 
 | |
| 			if(quot->compiledp != F)
 | |
| 				set_quot_xt(quot,quot->code);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* End the heap scan */
 | |
| 	gc_off = false;
 | |
| }
 | |
| 
 | |
| void compact_heap(F_HEAP *heap)
 | |
| {
 | |
| 	F_BLOCK *scan = first_block(heap);
 | |
| 
 | |
| 	while(scan)
 | |
| 	{
 | |
| 		F_BLOCK *next = next_block(heap,scan);
 | |
| 
 | |
| 		if(scan->status == B_ALLOCATED && scan != scan->forwarding)
 | |
| 			memcpy(scan->forwarding,scan,scan->size);
 | |
| 		scan = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Move all free space to the end of the code heap. This is not very efficient,
 | |
| since it makes several passes over the code and data heaps, but we only ever
 | |
| do this before saving a deployed image and exiting, so performaance is not
 | |
| critical here */
 | |
| void compact_code_heap(void)
 | |
| {
 | |
| 	/* Free all unreachable code blocks */
 | |
| 	gc();
 | |
| 
 | |
| 	fprintf(stderr,"*** Code heap compaction...\n");
 | |
| 	fflush(stderr);
 | |
| 
 | |
| 	/* Figure out where the code heap blocks are going to end up */
 | |
| 	CELL size = compute_heap_forwarding(&code_heap);
 | |
| 
 | |
| 	/* Update word and quotation code pointers */
 | |
| 	forward_object_xts();
 | |
| 
 | |
| 	/* Actually perform the compaction */
 | |
| 	compact_heap(&code_heap);
 | |
| 
 | |
| 	/* Update word and quotation XTs */
 | |
| 	fixup_object_xts();
 | |
| 
 | |
| 	/* Now update the free list; there will be a single free block at
 | |
| 	the end */
 | |
| 	build_free_list(&code_heap,size);
 | |
| }
 |