factor/basis/math/statistics/statistics.factor

367 lines
9.5 KiB
Factor

! Copyright (C) 2008 Doug Coleman, Michael Judge.
! See http://factorcode.org/license.txt for BSD license.
USING: assocs combinators generalizations kernel locals math
math.functions math.order math.vectors sequences
sequences.private sorting fry arrays grouping sets
splitting.monotonic ;
IN: math.statistics
: power-mean ( seq p -- x )
[ '[ _ ^ ] map-sum ] [ [ length / ] [ recip ^ ] bi* ] 2bi ; inline
: mean ( seq -- x )
[ sum ] [ length ] bi / ; inline
: sum-of-squares ( seq -- x )
[ sq ] map-sum ; inline
: sum-of-squared-errors ( seq -- x )
[ mean ] keep [ - sq ] with map-sum ; inline
: sum-of-absolute-errors ( seq -- x )
[ mean ] keep [ - ] with map-sum ; inline
: quadratic-mean ( seq -- x ) ! root-mean-square
[ sum-of-squares ] [ length ] bi / sqrt ; inline
: geometric-mean ( seq -- x )
[ length ] [ product ] bi nth-root ; inline
: harmonic-mean ( seq -- x )
[ recip ] map-sum recip ; inline
: contraharmonic-mean ( seq -- x )
[ sum-of-squares ] [ sum ] bi / ; inline
<PRIVATE
: trim-points ( p seq -- from to seq )
[ length [ * >integer ] keep over - ] keep ;
PRIVATE>
: trimmed-mean ( seq p -- x )
swap natural-sort trim-points <slice> mean ;
: winsorized-mean ( seq p -- x )
swap natural-sort trim-points
[ <slice> ]
[ nip dupd nth <array> ]
[ [ 1 - ] dip nth <array> ] 3tri
surround mean ;
<PRIVATE
:: ((kth-object)) ( seq k nth-quot exchange-quot quot: ( x y -- ? ) -- elt )
#! Wirth's method, Algorithm's + Data structues = Programs p. 84
k seq bounds-check 2drop
0 :> i!
0 :> j!
0 :> l!
0 :> x!
seq length 1 - :> m!
[ l m < ]
[
k seq nth x!
l i!
m j!
[ i j <= ]
[
[ i seq nth-quot call x quot call ] [ i 1 + i! ] while
[ x j seq nth-quot call quot call ] [ j 1 - j! ] while
i j <= [
i j seq exchange-quot call
i 1 + i!
j 1 - j!
] when
] do while
j k < [ i l! ] when
k i < [ j m! ] when
] while
k seq nth ; inline
: (kth-object) ( seq k nth-quot exchange-quot quot: ( x y -- ? ) -- elt )
#! The algorithm modifiers seq, so we clone it
[ clone ] 4dip ((kth-object)) ; inline
: kth-object-unsafe ( seq k quot: ( x y -- ? ) -- elt )
[ [ nth-unsafe ] [ exchange-unsafe ] ] dip (kth-object) ; inline
: kth-objects-unsafe ( seq kths quot: ( x y -- ? ) -- elts )
[ clone ] 2dip
'[ [ nth-unsafe ] [ exchange-unsafe ] _ ((kth-object)) ] with map ; inline
PRIVATE>
: kth-object ( seq k quot: ( x y -- ? ) -- elt )
[ [ nth ] [ exchange ] ] dip (kth-object) ; inline
: kth-objects ( seq kths quot: ( x y -- ? ) -- elts )
[ clone ] 2dip
'[ [ nth ] [ exchange ] _ ((kth-object)) ] with map ; inline
: kth-smallests ( seq kths -- elts ) [ < ] kth-objects-unsafe ;
: kth-smallest ( seq k -- elt ) [ < ] kth-object-unsafe ;
: kth-largests ( seq kths -- elts ) [ > ] kth-objects-unsafe ;
: kth-largest ( seq k -- elt ) [ > ] kth-object-unsafe ;
: count-relative ( seq k -- lt eq gt )
[ 0 0 0 ] 2dip '[
_ <=> {
{ +lt+ [ [ 1 + ] 2dip ] }
{ +gt+ [ 1 + ] }
{ +eq+ [ [ 1 + ] dip ] }
} case
] each ;
: minmax-relative ( seq k -- lt eq gt lt-max gt-min )
[ 0 0 0 -1/0. 1/0. ] 2dip '[
dup _ <=> {
{ +lt+ [ [ 1 + ] 5 ndip '[ _ max ] dip ] }
{ +gt+ [ [ 1 + ] 3dip min ] }
{ +eq+ [ [ 1 + ] 4dip drop ] }
} case
] each ;
: lower-median-index ( seq -- n )
[ midpoint@ ]
[ length odd? [ 1 - ] unless ] bi ;
: lower-median ( seq -- elt )
[ ] [ lower-median-index ] bi kth-smallest ;
: upper-median ( seq -- elt )
dup midpoint@ kth-smallest ;
: medians ( seq -- lower upper )
[ ]
[ [ lower-median-index ] [ midpoint@ ] bi 2array ]
bi kth-smallests first2 ;
: median ( seq -- x )
dup length odd? [ lower-median ] [ medians + 2 / ] if ;
! quantile can be any n-tile. quartile is n = 4, percentile is n = 100
! a,b,c,d parameters, N - number of samples, q is quantile (1/2 for median, 1/4 for 1st quartile)
! http://mathworld.wolfram.com/Quantile.html
! a + (N + b) q - 1
! could subtract 1 from a
: quantile-x ( a b N q -- x )
[ + ] dip * + 1 - ; inline
! 2+1/4 frac is 1/4
: frac ( x -- x' )
>fraction [ /mod nip ] keep / ; inline
:: quantile-indices ( seq qs a b c d -- seq )
qs [ [ a b seq length ] dip quantile-x ] map ;
:: qabcd ( y-floor y-ceiling x c d -- qabcd )
y-floor y-ceiling y-floor - c d x frac * + * + ;
:: quantile-abcd ( seq qs a b c d -- quantile )
seq qs a b c d quantile-indices :> indices
indices [ [ floor ] [ ceiling ] bi 2array ] map
concat :> index-pairs
seq index-pairs kth-smallests
2 group indices [ [ first2 ] dip c d qabcd ] 2map ;
: quantile1 ( seq qs -- seq' )
0 0 1 0 quantile-abcd ;
: quantile3 ( seq qs -- seq' )
1/2 0 0 0 quantile-abcd ;
: quantile4 ( seq qs -- seq' )
0 0 0 1 quantile-abcd ;
: quantile5 ( seq qs -- seq' )
1/2 0 0 1 quantile-abcd ;
: quantile6 ( seq qs -- seq' )
0 1 0 1 quantile-abcd ;
: quantile7 ( seq qs -- seq' )
1 -1 0 1 quantile-abcd ;
: quantile8 ( seq qs -- seq' )
1/3 1/3 0 1 quantile-abcd ;
: quantile9 ( seq qs -- seq' )
3/8 1/4 0 1 quantile-abcd ;
: quartile ( seq -- seq' )
{ 1/4 1/2 3/4 } quantile5 ;
<PRIVATE
: (sequence>assoc) ( seq map-quot: ( x -- ..y ) insert-quot: ( ..y assoc -- ) assoc -- assoc )
[ swap curry compose each ] keep ; inline
PRIVATE>
: sequence>assoc! ( assoc seq map-quot: ( x -- ..y ) insert-quot: ( ..y assoc -- ) -- assoc )
4 nrot (sequence>assoc) ; inline
: sequence>assoc ( seq map-quot: ( x -- ..y ) insert-quot: ( ..y assoc -- ) exemplar -- assoc )
clone (sequence>assoc) ; inline
: sequence>hashtable ( seq map-quot: ( x -- ..y ) insert-quot: ( ..y assoc -- ) -- hashtable )
H{ } sequence>assoc ; inline
: histogram! ( hashtable seq -- hashtable )
[ ] [ inc-at ] sequence>assoc! ;
: histogram-by ( seq quot: ( x -- bin ) -- hashtable )
[ inc-at ] sequence>hashtable ; inline
: histogram ( seq -- hashtable )
[ ] histogram-by ;
: sorted-histogram ( seq -- alist )
histogram sort-values ;
: normalized-histogram ( seq -- alist )
[ histogram ] [ length ] bi '[ _ / ] assoc-map ;
: collect-pairs ( seq quot: ( x -- v k ) -- hashtable )
[ push-at ] sequence>hashtable ; inline
: collect-by ( seq quot: ( x -- x' ) -- hashtable )
[ dup ] prepose collect-pairs ; inline
: mode ( seq -- x )
histogram >alist
[ ] [ [ [ second ] bi@ > ] most ] map-reduce first ;
ERROR: empty-sequence ;
: minmax ( seq -- min max )
[
empty-sequence
] [
[ first dup ] keep [ [ min ] [ max ] bi-curry bi* ] each
] if-empty ;
: range ( seq -- x )
minmax swap - ;
: sample-var ( seq -- x )
#! normalize by N-1; unbiased
dup length 1 <= [
drop 0
] [
[ sum-of-squared-errors ] [ length 1 - ] bi /
] if ;
: full-var ( seq -- x )
dup length 1 <= [
drop 0
] [
[ sum-of-squared-errors ] [ length ] bi /
] if ;
ALIAS: var sample-var
: sample-std ( seq -- x ) sample-var sqrt ;
: full-std ( seq -- x ) full-var sqrt ;
ALIAS: std sample-std
: signal-to-noise ( seq -- x ) [ mean ] [ std ] bi / ;
: mean-dev ( seq -- x ) dup mean v-n vabs mean ;
: median-dev ( seq -- x ) dup median v-n vabs mean ;
: sample-ste ( seq -- x ) [ sample-std ] [ length ] bi sqrt / ;
: full-ste ( seq -- x ) [ full-std ] [ length ] bi sqrt / ;
ALIAS: ste sample-ste
: ((r)) ( mean(x) mean(y) {x} {y} -- (r) )
! finds sigma((xi-mean(x))(yi-mean(y))
0 [ [ [ pick ] dip swap - ] bi@ * + ] 2reduce 2nip ;
: (r) ( mean(x) mean(y) {x} {y} sx sy -- r )
* recip [ [ ((r)) ] keep length 1 - / ] dip * ;
: [r] ( {{x,y}...} -- mean(x) mean(y) {x} {y} sx sy )
first2 [ [ [ mean ] bi@ ] 2keep ] 2keep [ std ] bi@ ;
: r ( {{x,y}...} -- r )
[r] (r) ;
: r^2 ( {{x,y}...} -- r )
r sq ;
: least-squares ( {{x,y}...} -- alpha beta )
[r] { [ 2dup ] [ ] [ ] [ ] [ ] } spread
! stack is mean(x) mean(y) mean(x) mean(y) {x} {y} sx sy
[ (r) ] 2keep ! stack is mean(x) mean(y) r sx sy
swap / * ! stack is mean(x) mean(y) beta
[ swapd * - ] keep ;
: cov ( {x} {y} -- cov )
[ dup mean v-n ] bi@ v* mean ;
: sample-corr ( {x} {y} -- corr )
[ cov ] [ [ sample-var ] bi@ * sqrt ] 2bi / ;
: full-corr ( {x} {y} -- corr )
[ cov ] [ [ full-var ] bi@ * sqrt ] 2bi / ;
ALIAS: corr sample-corr
: cum-map ( seq identity quot -- seq' )
swapd [ dup ] compose map nip ; inline
: cum-sum ( seq -- seq' )
0 [ + ] cum-map ;
: cum-product ( seq -- seq' )
1 [ * ] cum-map ;
: cum-min ( seq -- seq' )
dup ?first [ min ] cum-map ;
: cum-max ( seq -- seq' )
dup ?first [ max ] cum-map ;
: entropy ( probabilities -- n )
dup sum '[ _ / dup log * ] map-sum neg ;
: maximum-entropy ( probabilities -- n )
length log ;
: normalized-entropy ( probabilities -- n )
[ entropy ] [ maximum-entropy ] bi / ;
: binary-entropy ( p -- h )
[ dup log * ] [ 1 swap - dup log * ] bi + neg 2 log / ;
: standardize ( u -- v )
[ dup mean v-n ] [ std ] bi v/n ;
: differences ( u -- v )
[ 1 tail-slice ] keep [ - ] 2map ;
: rescale ( u -- v )
dup minmax over - [ v-n ] [ v/n ] bi* ;
: rank-values ( seq -- seq' )
[
[ ] [ length iota ] bi zip sort-keys
[ [ first ] bi@ = ] monotonic-split
[ values ] map [ 0 [ length + ] accumulate nip ] [ ] bi zip
] [ length f <array> ] bi
[ '[ first2 [ _ set-nth ] with each ] each ] keep ;