factor/vm/heap.cpp

197 lines
3.9 KiB
C++

#include "master.hpp"
/* This malloc-style heap code is reasonably generic. Maybe in the future, it
will be used for the data heap too, if we ever get mark/sweep/compact GC. */
namespace factor
{
void heap::clear_free_list()
{
memset(&free,0,sizeof(heap_free_list));
}
heap::heap(bool secure_gc_, cell size, bool executable_p) : secure_gc(secure_gc_)
{
if(size > (1L << (sizeof(cell) * 8 - 6))) fatal_error("Heap too large",size);
seg = new segment(align_page(size),executable_p);
if(!seg) fatal_error("Out of memory in heap allocator",size);
state = new mark_bits<heap_block,block_size_increment>(seg->start,size);
clear_free_list();
}
heap::~heap()
{
delete seg;
seg = NULL;
delete state;
state = NULL;
}
void heap::add_to_free_list(free_heap_block *block)
{
if(block->size() < free_list_count * block_size_increment)
{
int index = block->size() / block_size_increment;
block->next_free = free.small_blocks[index];
free.small_blocks[index] = block;
}
else
{
block->next_free = free.large_blocks;
free.large_blocks = block;
}
}
/* Called after reading the code heap from the image file, and after code heap
compaction. Makes a free list consisting of one free block, at the very end. */
void heap::build_free_list(cell size)
{
clear_free_list();
free_heap_block *end = (free_heap_block *)(seg->start + size);
end->set_free();
end->set_size(seg->end - (cell)end);
add_to_free_list(end);
}
void heap::assert_free_block(free_heap_block *block)
{
#ifdef FACTOR_DEBUG
assert(block->free_p());
#endif
}
free_heap_block *heap::find_free_block(cell size)
{
cell attempt = size;
while(attempt < free_list_count * block_size_increment)
{
int index = attempt / block_size_increment;
free_heap_block *block = free.small_blocks[index];
if(block)
{
assert_free_block(block);
free.small_blocks[index] = block->next_free;
return block;
}
attempt *= 2;
}
free_heap_block *prev = NULL;
free_heap_block *block = free.large_blocks;
while(block)
{
assert_free_block(block);
if(block->size() >= size)
{
if(prev)
prev->next_free = block->next_free;
else
free.large_blocks = block->next_free;
return block;
}
prev = block;
block = block->next_free;
}
return NULL;
}
free_heap_block *heap::split_free_block(free_heap_block *block, cell size)
{
if(block->size() != size)
{
/* split the block in two */
free_heap_block *split = (free_heap_block *)((cell)block + size);
split->set_free();
split->set_size(block->size() - size);
split->next_free = block->next_free;
block->set_size(size);
add_to_free_list(split);
}
return block;
}
heap_block *heap::heap_allot(cell size)
{
size = align(size,block_size_increment);
free_heap_block *block = find_free_block(size);
if(block)
{
block = split_free_block(block,size);
return block;
}
else
return NULL;
}
void heap::heap_free(heap_block *block)
{
free_heap_block *free_block = (free_heap_block *)block;
free_block->set_free();
add_to_free_list(free_block);
}
void heap::mark_block(heap_block *block)
{
state->set_marked_p(block);
}
/* Compute total sum of sizes of free blocks, and size of largest free block */
void heap::heap_usage(cell *used, cell *total_free, cell *max_free)
{
*used = 0;
*total_free = 0;
*max_free = 0;
heap_block *scan = first_block();
heap_block *end = last_block();
while(scan != end)
{
cell size = scan->size();
if(scan->free_p())
{
*total_free += size;
if(size > *max_free)
*max_free = size;
}
else
*used += size;
scan = scan->next();
}
}
/* The size of the heap after compaction */
cell heap::heap_size()
{
heap_block *scan = first_block();
heap_block *end = last_block();
while(scan != end)
{
if(scan->free_p()) break;
else scan = scan->next();
}
if(scan != end)
{
assert(scan->free_p());
assert((cell)scan + scan->size() == seg->end);
return (cell)scan - (cell)first_block();
}
else
return seg->size;
}
}