69 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Factor
		
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Factor
		
	
	
! Copyright (c) 2012 Anonymous
 | 
						|
! See http://factorcode.org/license.txt for BSD license.
 | 
						|
USING: combinators kernel ;
 | 
						|
IN: rosetta-code.ternary-logic
 | 
						|
 | 
						|
! http://rosettacode.org/wiki/Ternary_logic
 | 
						|
 | 
						|
! In logic, a three-valued logic (also trivalent, ternary, or
 | 
						|
! trinary logic, sometimes abbreviated 3VL) is any of several
 | 
						|
! many-valued logic systems in which there are three truth values
 | 
						|
! indicating true, false and some indeterminate third value. This
 | 
						|
! is contrasted with the more commonly known bivalent logics (such
 | 
						|
! as classical sentential or boolean logic) which provide only for
 | 
						|
! true and false. Conceptual form and basic ideas were initially
 | 
						|
! created by Ćukasiewicz, Lewis and Sulski. These were then
 | 
						|
! re-formulated by Grigore Moisil in an axiomatic algebraic form,
 | 
						|
! and also extended to n-valued logics in 1945.
 | 
						|
 | 
						|
! Task:
 | 
						|
 | 
						|
! * Define a new type that emulates ternary logic by storing data trits.
 | 
						|
 | 
						|
! * Given all the binary logic operators of the original
 | 
						|
!   programming language, reimplement these operators for the new
 | 
						|
!   Ternary logic type trit.
 | 
						|
 | 
						|
! * Generate a sampling of results using trit variables.
 | 
						|
 | 
						|
! * Kudos for actually thinking up a test case algorithm where
 | 
						|
!   ternary logic is intrinsically useful, optimises the test case
 | 
						|
!   algorithm and is preferable to binary logic.
 | 
						|
 | 
						|
SINGLETON: m
 | 
						|
UNION: trit t m POSTPONE: f ;
 | 
						|
 | 
						|
GENERIC: >trit ( object -- trit )
 | 
						|
M: trit >trit ;
 | 
						|
 | 
						|
: tnot ( trit1 -- trit )
 | 
						|
    >trit { { t [ f ] } { m [ m ] } { f [ t ] } } case ;
 | 
						|
 | 
						|
: tand ( trit1 trit2 -- trit )
 | 
						|
    >trit {
 | 
						|
        { t [ >trit ] }
 | 
						|
        { m [ >trit { { t [ m ] } { m [ m ] } { f [ f ] } } case ] }
 | 
						|
        { f [ >trit drop f ] }
 | 
						|
    } case ;
 | 
						|
 | 
						|
: tor ( trit1 trit2 -- trit )
 | 
						|
    >trit {
 | 
						|
        { t [ >trit drop t ] }
 | 
						|
        { m [ >trit { { t [ t ] } { m [ m ] } { f [ m ] } } case ] }
 | 
						|
        { f [ >trit ] }
 | 
						|
    } case ;
 | 
						|
 | 
						|
: txor ( trit1 trit2 -- trit )
 | 
						|
    >trit {
 | 
						|
        { t [ tnot ] }
 | 
						|
        { m [ >trit drop m ] }
 | 
						|
        { f [ >trit ] }
 | 
						|
    } case ;
 | 
						|
 | 
						|
: t= ( trit1 trit2 -- trit )
 | 
						|
    {
 | 
						|
        { t [ >trit ] }
 | 
						|
        { m [ >trit drop m ] }
 | 
						|
        { f [ tnot ] }
 | 
						|
    } case ;
 |