236 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			236 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
#include "master.hpp"
 | 
						|
 | 
						|
/* This malloc-style heap code is reasonably generic. Maybe in the future, it
 | 
						|
will be used for the data heap too, if we ever get mark/sweep/compact GC. */
 | 
						|
 | 
						|
namespace factor
 | 
						|
{
 | 
						|
 | 
						|
void heap::clear_free_list()
 | 
						|
{
 | 
						|
	memset(&free,0,sizeof(heap_free_list));
 | 
						|
}
 | 
						|
 | 
						|
heap::heap(bool secure_gc_, cell size, bool executable_p) : secure_gc(secure_gc_)
 | 
						|
{
 | 
						|
	if(size > (1L << (sizeof(cell) * 8 - 6))) fatal_error("Heap too large",size);
 | 
						|
	seg = new segment(align_page(size),executable_p);
 | 
						|
	if(!seg) fatal_error("Out of memory in heap allocator",size);
 | 
						|
	state = new mark_bits<heap_block,block_size_increment>(seg->start,size);
 | 
						|
	clear_free_list();
 | 
						|
}
 | 
						|
 | 
						|
heap::~heap()
 | 
						|
{
 | 
						|
	delete seg;
 | 
						|
	seg = NULL;
 | 
						|
	delete state;
 | 
						|
	state = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void heap::add_to_free_list(free_heap_block *block)
 | 
						|
{
 | 
						|
	if(block->size() < free_list_count * block_size_increment)
 | 
						|
	{
 | 
						|
		int index = block->size() / block_size_increment;
 | 
						|
		block->next_free = free.small_blocks[index];
 | 
						|
		free.small_blocks[index] = block;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		block->next_free = free.large_blocks;
 | 
						|
		free.large_blocks = block;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Called after reading the code heap from the image file, and after code heap
 | 
						|
compaction. Makes a free list consisting of one free block, at the very end. */
 | 
						|
void heap::build_free_list(cell size)
 | 
						|
{
 | 
						|
	clear_free_list();
 | 
						|
	free_heap_block *end = (free_heap_block *)(seg->start + size);
 | 
						|
	end->set_type(FREE_BLOCK_TYPE);
 | 
						|
	end->set_size(seg->end - (cell)end);
 | 
						|
	add_to_free_list(end);
 | 
						|
}
 | 
						|
 | 
						|
void heap::assert_free_block(free_heap_block *block)
 | 
						|
{
 | 
						|
	if(block->type() != FREE_BLOCK_TYPE)
 | 
						|
		critical_error("Invalid block in free list",(cell)block);
 | 
						|
}
 | 
						|
 | 
						|
free_heap_block *heap::find_free_block(cell size)
 | 
						|
{
 | 
						|
	cell attempt = size;
 | 
						|
 | 
						|
	while(attempt < free_list_count * block_size_increment)
 | 
						|
	{
 | 
						|
		int index = attempt / block_size_increment;
 | 
						|
		free_heap_block *block = free.small_blocks[index];
 | 
						|
		if(block)
 | 
						|
		{
 | 
						|
			assert_free_block(block);
 | 
						|
			free.small_blocks[index] = block->next_free;
 | 
						|
			return block;
 | 
						|
		}
 | 
						|
 | 
						|
		attempt *= 2;
 | 
						|
	}
 | 
						|
 | 
						|
	free_heap_block *prev = NULL;
 | 
						|
	free_heap_block *block = free.large_blocks;
 | 
						|
 | 
						|
	while(block)
 | 
						|
	{
 | 
						|
		assert_free_block(block);
 | 
						|
		if(block->size() >= size)
 | 
						|
		{
 | 
						|
			if(prev)
 | 
						|
				prev->next_free = block->next_free;
 | 
						|
			else
 | 
						|
				free.large_blocks = block->next_free;
 | 
						|
			return block;
 | 
						|
		}
 | 
						|
 | 
						|
		prev = block;
 | 
						|
		block = block->next_free;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
free_heap_block *heap::split_free_block(free_heap_block *block, cell size)
 | 
						|
{
 | 
						|
	if(block->size() != size )
 | 
						|
	{
 | 
						|
		/* split the block in two */
 | 
						|
		free_heap_block *split = (free_heap_block *)((cell)block + size);
 | 
						|
		split->set_type(FREE_BLOCK_TYPE);
 | 
						|
		split->set_size(block->size() - size);
 | 
						|
		split->next_free = block->next_free;
 | 
						|
		block->set_size(size);
 | 
						|
		add_to_free_list(split);
 | 
						|
	}
 | 
						|
 | 
						|
	return block;
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate a block of memory from the mark and sweep GC heap */
 | 
						|
heap_block *heap::heap_allot(cell size, cell type)
 | 
						|
{
 | 
						|
	size = (size + block_size_increment - 1) & ~(block_size_increment - 1);
 | 
						|
 | 
						|
	free_heap_block *block = find_free_block(size);
 | 
						|
	if(block)
 | 
						|
	{
 | 
						|
		block = split_free_block(block,size);
 | 
						|
		block->set_type(type);
 | 
						|
		return block;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Deallocates a block manually */
 | 
						|
void heap::heap_free(heap_block *block)
 | 
						|
{
 | 
						|
	block->set_type(FREE_BLOCK_TYPE);
 | 
						|
	add_to_free_list((free_heap_block *)block);
 | 
						|
}
 | 
						|
 | 
						|
void heap::mark_block(heap_block *block)
 | 
						|
{
 | 
						|
	state->set_marked_p(block,true);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute total sum of sizes of free blocks, and size of largest free block */
 | 
						|
void heap::heap_usage(cell *used, cell *total_free, cell *max_free)
 | 
						|
{
 | 
						|
	*used = 0;
 | 
						|
	*total_free = 0;
 | 
						|
	*max_free = 0;
 | 
						|
 | 
						|
	heap_block *scan = first_block();
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		cell size = scan->size();
 | 
						|
 | 
						|
		if(scan->type() == FREE_BLOCK_TYPE)
 | 
						|
		{
 | 
						|
			*total_free += size;
 | 
						|
			if(size > *max_free)
 | 
						|
				*max_free = size;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			*used += size;
 | 
						|
 | 
						|
		scan = next_block(scan);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* The size of the heap after compaction */
 | 
						|
cell heap::heap_size()
 | 
						|
{
 | 
						|
	heap_block *scan = first_block();
 | 
						|
	
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		if(scan->type() == FREE_BLOCK_TYPE) break;
 | 
						|
		else scan = next_block(scan);
 | 
						|
	}
 | 
						|
 | 
						|
	assert(scan->type() == FREE_BLOCK_TYPE);
 | 
						|
	assert((cell)scan + scan->size() == seg->end);
 | 
						|
 | 
						|
	return (cell)scan - (cell)first_block();
 | 
						|
}
 | 
						|
 | 
						|
void heap::compact_heap()
 | 
						|
{
 | 
						|
	forwarding.clear();
 | 
						|
 | 
						|
	heap_block *scan = first_block();
 | 
						|
	char *address = (char *)scan;
 | 
						|
 | 
						|
	/* Slide blocks up while building the forwarding hashtable. */
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		heap_block *next = next_block(scan);
 | 
						|
 
 | 
						|
		if(state->is_marked_p(scan))
 | 
						|
		{
 | 
						|
			cell size = scan->size();
 | 
						|
			memmove(address,scan,size);
 | 
						|
			forwarding[scan] = address;
 | 
						|
			address += size;
 | 
						|
		}
 | 
						|
 | 
						|
		scan = next;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Now update the free list; there will be a single free block at
 | 
						|
	the end */
 | 
						|
	build_free_list((cell)address - seg->start);
 | 
						|
}
 | 
						|
 | 
						|
heap_block *heap::free_allocated(heap_block *prev, heap_block *scan)
 | 
						|
{
 | 
						|
	if(secure_gc)
 | 
						|
		memset(scan + 1,0,scan->size() - sizeof(heap_block));
 | 
						|
 | 
						|
	if(prev && prev->type() == FREE_BLOCK_TYPE)
 | 
						|
	{
 | 
						|
		prev->set_size(prev->size() + scan->size());
 | 
						|
		return prev;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		scan->set_type(FREE_BLOCK_TYPE);
 | 
						|
		return scan;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
}
 |