167 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Factor
		
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Factor
		
	
	
| ! Copyright (c) 2007-2010 Aaron Schaefer.
 | |
| ! The contents of this file are licensed under the Simplified BSD License
 | |
| ! A copy of the license is available at http://factorcode.org/license.txt
 | |
| USING: accessors arrays byte-arrays fry hints kernel lists make math
 | |
|     math.functions math.matrices math.order math.parser math.primes.factors
 | |
|     math.primes.lists math.primes.miller-rabin math.ranges math.ratios
 | |
|     math.vectors namespaces parser prettyprint quotations sequences sorting
 | |
|     strings unicode vocabs vocabs.parser words ;
 | |
| IN: project-euler.common
 | |
| 
 | |
| ! A collection of words used by more than one Project Euler solution
 | |
| ! and/or related words that could be useful for future problems.
 | |
| 
 | |
| ! Problems using each public word
 | |
| ! -------------------------------
 | |
| ! alpha-value - #22, #42
 | |
| ! cartesian-product - #4, #27, #29, #32, #33, #43, #44, #56
 | |
| ! log10 - #25, #134
 | |
| ! max-path - #18, #67
 | |
| ! mediant - #71, #73
 | |
| ! nth-prime - #7, #69
 | |
| ! nth-triangle - #12, #42
 | |
| ! number>digits - #16, #20, #30, #34, #35, #38, #43, #52, #55, #56, #92, #206
 | |
| ! palindrome? - #4, #36, #55
 | |
| ! pandigital? - #32, #38
 | |
| ! pentagonal? - #44, #45
 | |
| ! penultimate - #69, #71
 | |
| ! propagate-all - #18, #67
 | |
| ! permutations? - #49, #70
 | |
| ! sum-proper-divisors - #21
 | |
| ! tau* - #12
 | |
| ! [uad]-transform - #39, #75
 | |
| 
 | |
| 
 | |
| : nth-pair ( seq n -- nth next )
 | |
|     tail-slice first2 ;
 | |
| 
 | |
| : perfect-square? ( n -- ? )
 | |
|     dup sqrt mod zero? ;
 | |
| 
 | |
| <PRIVATE
 | |
| 
 | |
| : count-digits ( n -- byte-array )
 | |
|     10 <byte-array> [
 | |
|         '[ 10 /mod _ [ 1 + ] change-nth dup 0 > ] loop drop
 | |
|     ] keep ;
 | |
| 
 | |
| HINTS: count-digits fixnum ;
 | |
| 
 | |
| : max-children ( seq -- seq )
 | |
|     [ dup length 1 - <iota> [ nth-pair max , ] with each ] { } make ;
 | |
| 
 | |
| ! Propagate one row into the upper one
 | |
| : propagate ( bottom top -- newtop )
 | |
|     [ over rest rot first2 max rot + ] map nip ;
 | |
| 
 | |
| : (sum-divisors) ( n -- sum )
 | |
|     dup sqrt >integer [1,b] [
 | |
|         [ 2dup divisor? [ 2dup / + , ] [ drop ] if ] each
 | |
|         dup perfect-square? [ sqrt >fixnum neg , ] [ drop ] if
 | |
|     ] { } make sum ;
 | |
| 
 | |
| : transform ( triple matrix -- new-triple )
 | |
|     [ 1array ] dip m. first ;
 | |
| 
 | |
| PRIVATE>
 | |
| 
 | |
| : alpha-value ( str -- n )
 | |
|     >lower [ CHAR: a - 1 + ] map-sum ;
 | |
| 
 | |
| : mediant ( a/c b/d -- (a+b)/(c+d) )
 | |
|     2>fraction [ + ] 2bi@ / ;
 | |
| 
 | |
| : max-path ( triangle -- n )
 | |
|     dup length 1 > [
 | |
|         2 cut* first2 max-children v+ suffix max-path
 | |
|     ] [
 | |
|         first first
 | |
|     ] if ;
 | |
| 
 | |
| : number>digits ( n -- seq )
 | |
|     [ dup 0 = not ] [ 10 /mod ] produce reverse! nip ;
 | |
| 
 | |
| : digits>number ( seq -- n )
 | |
|     0 [ [ 10 * ] [ + ] bi* ] reduce ;
 | |
| 
 | |
| : number-length ( n -- m )
 | |
|     abs [
 | |
|         1
 | |
|     ] [
 | |
|         1 0 [ 2over >= ]
 | |
|         [ [ 10 * ] [ 1 + ] bi* ] while 2nip
 | |
|     ] if-zero ;
 | |
| 
 | |
| : nth-place ( x n -- y )
 | |
|     10^ [ * round >integer ] keep /f ;
 | |
| 
 | |
| : nth-prime ( n -- n )
 | |
|     1 - lprimes lnth ;
 | |
| 
 | |
| : nth-triangle ( n -- n )
 | |
|     dup 1 + * 2 / ;
 | |
| 
 | |
| : palindrome? ( n -- ? )
 | |
|     number>string dup reverse = ;
 | |
| 
 | |
| : pandigital? ( n -- ? )
 | |
|     number>string natural-sort >string "123456789" = ;
 | |
| 
 | |
| : pentagonal? ( n -- ? )
 | |
|     dup 0 > [ 24 * 1 + sqrt 1 + 6 / 1 mod zero? ] [ drop f ] if ; inline
 | |
| 
 | |
| : penultimate ( seq -- elt )
 | |
|     dup length 2 - swap nth ;
 | |
| 
 | |
| ! Not strictly needed, but it is nice to be able to dump the
 | |
| ! triangle after the propagation
 | |
| : propagate-all ( triangle -- new-triangle )
 | |
|     reverse unclip dup rot
 | |
|     [ propagate dup ] map nip
 | |
|     reverse swap suffix ;
 | |
| 
 | |
| : permutations? ( n m -- ? )
 | |
|     [ count-digits ] same? ;
 | |
| 
 | |
| : sum-divisors ( n -- sum )
 | |
|     dup 4 < [ { 0 1 3 4 } nth ] [ (sum-divisors) ] if ;
 | |
| 
 | |
| : sum-proper-divisors ( n -- sum )
 | |
|     [ sum-divisors ] keep - ;
 | |
| 
 | |
| : abundant? ( n -- ? )
 | |
|     dup sum-proper-divisors < ;
 | |
| 
 | |
| : deficient? ( n -- ? )
 | |
|     dup sum-proper-divisors > ;
 | |
| 
 | |
| : perfect? ( n -- ? )
 | |
|     dup sum-proper-divisors = ;
 | |
| 
 | |
| ! The divisor function, counts the number of divisors
 | |
| : tau ( m -- n )
 | |
|     group-factors flip second 1 [ 1 + * ] reduce ;
 | |
| 
 | |
| ! Optimized brute-force, is often faster than prime factorization
 | |
| : tau* ( m -- n )
 | |
|     factor-2s dup [ 1 + ]
 | |
|     [ perfect-square? -1 0 ? ]
 | |
|     [ dup sqrt >fixnum [1,b] ] tri* [
 | |
|         dupd divisor? [ [ 2 + ] dip ] when
 | |
|     ] each drop * ;
 | |
| 
 | |
| ! These transforms are for generating primitive Pythagorean triples
 | |
| : u-transform ( triple -- new-triple )
 | |
|     { { 1 2 2 } { -2 -1 -2 } { 2 2 3 } } transform ;
 | |
| : a-transform ( triple -- new-triple )
 | |
|     { { 1 2 2 } { 2 1 2 } { 2 2 3 } } transform ;
 | |
| : d-transform ( triple -- new-triple )
 | |
|     { { -1 -2 -2 } { 2 1 2 } { 2 2 3 } } transform ;
 | |
| 
 | |
| SYNTAX: SOLUTION:
 | |
|     scan-word
 | |
|     [ name>> "-main" append create-word-in ] keep
 | |
|     [ drop current-vocab main<< ]
 | |
|     [ [ . ] swap prefix ( -- ) define-declared ]
 | |
|     2bi ;
 |