102 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Factor
		
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Factor
		
	
	
| ! Copyright (C) 2007-2009 Samuel Tardieu.
 | |
| ! See http://factorcode.org/license.txt for BSD license.
 | |
| USING: combinators combinators.short-circuit fry kernel math
 | |
| math.bitwise math.functions math.order math.primes.erato
 | |
| math.primes.erato.private math.primes.miller-rabin math.ranges
 | |
| literals random sequences sets vectors ;
 | |
| IN: math.primes
 | |
| 
 | |
| <PRIVATE
 | |
| 
 | |
| : look-in-bitmap ( n -- ? ) $[ 8999999 sieve ] marked-unsafe? ; inline
 | |
| 
 | |
| : (prime?) ( n -- ? )
 | |
|     dup 8999999 <= [ look-in-bitmap ] [ miller-rabin ] if ;
 | |
| 
 | |
| ! In order not to reallocate large vectors, we compute the upper bound
 | |
| ! of the number of primes in a given interval. We use a double inequality given
 | |
| ! by Pierre Dusart in http://www.ams.org/mathscinet-getitem?mr=99d:11133
 | |
| ! for x > 598. Under this limit, we know that there are at most 108 primes.
 | |
| : upper-pi ( x -- y )
 | |
|     dup log [ / ] [ 1.2762 swap / 1 + ] bi * ceiling ;
 | |
| 
 | |
| : lower-pi ( x -- y )
 | |
|     dup log [ / ] [ 0.992 swap / 1 + ] bi * floor ;
 | |
| 
 | |
| : <primes-vector> ( low high -- vector )
 | |
|     swap [ [ upper-pi ] [ lower-pi ] bi* - >integer
 | |
|     108 max 10000 min <vector> ] keep
 | |
|     3 < [ [ 2 swap push ] keep ] when ;
 | |
| 
 | |
| : simple? ( n -- ? ) { [ even? ] [ 3 mod 0 = ] [ 5 mod 0 = ] } 1|| ;
 | |
| 
 | |
| PRIVATE>
 | |
| 
 | |
| : prime? ( n -- ? )
 | |
|     {
 | |
|         { [ dup 7 < ] [ { 2 3 5 } member? ] }
 | |
|         { [ dup simple? ] [ drop f ] }
 | |
|         [ (prime?) ]
 | |
|     } cond ; foldable
 | |
| 
 | |
| : next-prime ( n -- p )
 | |
|     dup 2 < [
 | |
|         drop 2
 | |
|     ] [
 | |
|         next-odd [ dup prime? ] [ 2 + ] until
 | |
|     ] if ; foldable
 | |
| 
 | |
| <PRIVATE
 | |
| 
 | |
| : (primes-between) ( low high -- seq )
 | |
|     [ [ 3 max dup even? [ 1 + ] when ] dip 2 <range> ]
 | |
|     [ <primes-vector> ] 2bi
 | |
|     [ '[ [ prime? ] _ push-if ] each ] keep clone ;
 | |
| 
 | |
| PRIVATE>
 | |
| 
 | |
| : primes-between ( low high -- seq )
 | |
|     [ ceiling >integer ] [ floor >integer ] bi*
 | |
|     {
 | |
|         { [ 2dup > ] [ 2drop V{ } clone ] }
 | |
|         { [ dup 2 = ] [ 2drop V{ 2 } clone ] }
 | |
|         { [ dup 2 < ] [ 2drop V{ } clone ] }
 | |
|         [ (primes-between) ]
 | |
|     } cond ;
 | |
| 
 | |
| : primes-upto ( n -- seq ) 2 swap primes-between ;
 | |
| 
 | |
| : coprime? ( a b -- ? ) gcd nip 1 = ; foldable
 | |
| 
 | |
| : random-prime ( numbits -- p )
 | |
|     [ ] [ 2^ ] [ random-bits* next-prime ] tri
 | |
|     2dup < [ 2drop random-prime ] [ 2nip ] if ;
 | |
| 
 | |
| : estimated-primes ( m -- n )
 | |
|     dup log / ; foldable
 | |
| 
 | |
| ERROR: no-relative-prime n ;
 | |
| 
 | |
| <PRIVATE
 | |
| 
 | |
| : (find-relative-prime) ( n guess -- p )
 | |
|     over 1 <= [ over no-relative-prime ] when
 | |
|     dup 1 <= [ drop 3 ] when
 | |
|     [ 2dup coprime? ] [ 2 + ] until nip ;
 | |
| 
 | |
| PRIVATE>
 | |
| 
 | |
| : find-relative-prime* ( n guess -- p )
 | |
|     #! find a prime relative to n with initial guess
 | |
|     >odd (find-relative-prime) ;
 | |
| 
 | |
| : find-relative-prime ( n -- p )
 | |
|     dup random find-relative-prime* ;
 | |
| 
 | |
| ERROR: too-few-primes n numbits ;
 | |
| 
 | |
| : unique-primes ( n numbits -- seq )
 | |
|     2dup 2^ estimated-primes > [ too-few-primes ] when
 | |
|     2dup [ random-prime ] curry replicate
 | |
|     dup all-unique? [ 2nip ] [ drop unique-primes ] if ;
 |