199 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			199 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
namespace factor {
 | 
						|
 | 
						|
struct allocator_room {
 | 
						|
  cell size;
 | 
						|
  cell occupied_space;
 | 
						|
  cell total_free;
 | 
						|
  cell contiguous_free;
 | 
						|
  cell free_block_count;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Block> struct free_list_allocator {
 | 
						|
  cell size;
 | 
						|
  cell start;
 | 
						|
  cell end;
 | 
						|
  free_list free_blocks;
 | 
						|
  mark_bits state;
 | 
						|
 | 
						|
  free_list_allocator(cell size, cell start);
 | 
						|
  void initial_free_list(cell occupied);
 | 
						|
  bool contains_p(Block* block);
 | 
						|
  bool can_allot_p(cell size);
 | 
						|
  Block* allot(cell size);
 | 
						|
  void free(Block* block);
 | 
						|
  cell occupied_space();
 | 
						|
  cell free_space();
 | 
						|
  cell largest_free_block();
 | 
						|
  cell free_block_count();
 | 
						|
  void sweep();
 | 
						|
  template <typename Iterator> void sweep(Iterator& iter);
 | 
						|
  template <typename Iterator, typename Fixup>
 | 
						|
  void compact(Iterator& iter, Fixup fixup, const Block** finger);
 | 
						|
  template <typename Iterator, typename Fixup>
 | 
						|
  void iterate(Iterator& iter, Fixup fixup);
 | 
						|
  template <typename Iterator> void iterate(Iterator& iter);
 | 
						|
  allocator_room as_allocator_room();
 | 
						|
};
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
free_list_allocator<Block>::free_list_allocator(cell size, cell start)
 | 
						|
    : size(size),
 | 
						|
      start(start),
 | 
						|
      end(start + size),
 | 
						|
      state(mark_bits(size, start)) {
 | 
						|
  initial_free_list(0);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
void free_list_allocator<Block>::initial_free_list(cell occupied) {
 | 
						|
  free_blocks.initial_free_list(start, end, occupied);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
bool free_list_allocator<Block>::contains_p(Block* block) {
 | 
						|
  return ((cell)block - start) < size;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
bool free_list_allocator<Block>::can_allot_p(cell size) {
 | 
						|
  return free_blocks.can_allot_p(size);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> Block* free_list_allocator<Block>::allot(cell size) {
 | 
						|
  size = align(size, data_alignment);
 | 
						|
 | 
						|
  free_heap_block* block = free_blocks.find_free_block(size);
 | 
						|
  if (block) {
 | 
						|
    block = free_blocks.split_free_block(block, size);
 | 
						|
    return (Block*)block;
 | 
						|
  } else
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> void free_list_allocator<Block>::free(Block* block) {
 | 
						|
  free_heap_block* free_block = (free_heap_block*)block;
 | 
						|
  free_block->make_free(block->size());
 | 
						|
  free_blocks.add_to_free_list(free_block);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> cell free_list_allocator<Block>::free_space() {
 | 
						|
  return free_blocks.free_space;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> cell free_list_allocator<Block>::occupied_space() {
 | 
						|
  return size - free_blocks.free_space;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
cell free_list_allocator<Block>::largest_free_block() {
 | 
						|
  return free_blocks.largest_free_block();
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> cell free_list_allocator<Block>::free_block_count() {
 | 
						|
  return free_blocks.free_block_count;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator>
 | 
						|
void free_list_allocator<Block>::sweep(Iterator& iter) {
 | 
						|
  free_blocks.clear_free_list();
 | 
						|
 | 
						|
  cell start = this->start;
 | 
						|
  cell end = this->end;
 | 
						|
 | 
						|
  while (start != end) {
 | 
						|
    /* find next unmarked block */
 | 
						|
    start = state.next_unmarked_block_after(start);
 | 
						|
 | 
						|
    if (start != end) {
 | 
						|
      /* find size */
 | 
						|
      cell size = state.unmarked_block_size(start);
 | 
						|
      FACTOR_ASSERT(size > 0);
 | 
						|
 | 
						|
      free_heap_block* free_block = (free_heap_block*)start;
 | 
						|
      free_block->make_free(size);
 | 
						|
      free_blocks.add_to_free_list(free_block);
 | 
						|
      iter((Block*)start, size);
 | 
						|
 | 
						|
      start = start + size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block> struct null_sweep_iterator {
 | 
						|
  void operator()(Block* free_block, cell size) {}
 | 
						|
};
 | 
						|
 | 
						|
template <typename Block> void free_list_allocator<Block>::sweep() {
 | 
						|
  null_sweep_iterator<Block> none;
 | 
						|
  sweep(none);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block, typename Iterator> struct heap_compactor {
 | 
						|
  mark_bits* state;
 | 
						|
  char* address;
 | 
						|
  Iterator& iter;
 | 
						|
  const Block** finger;
 | 
						|
 | 
						|
  heap_compactor(mark_bits* state, Block* address,
 | 
						|
                 Iterator& iter, const Block** finger)
 | 
						|
      : state(state), address((char*)address), iter(iter), finger(finger) {}
 | 
						|
 | 
						|
  void operator()(Block* block, cell size) {
 | 
						|
    if (this->state->marked_p((cell)block)) {
 | 
						|
      *finger = (Block*)((cell)block + size);
 | 
						|
      memmove((Block*)address, block, size);
 | 
						|
      iter(block, (Block*)address, size);
 | 
						|
      address += size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/* The forwarding map must be computed first by calling
 | 
						|
   state.compute_forwarding(). */
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator, typename Fixup>
 | 
						|
void free_list_allocator<Block>::compact(Iterator& iter, Fixup fixup,
 | 
						|
                                         const Block** finger) {
 | 
						|
  heap_compactor<Block, Iterator> compactor(&state, (Block*)start, iter, finger);
 | 
						|
  iterate(compactor, fixup);
 | 
						|
 | 
						|
  /* Now update the free list; there will be a single free block at
 | 
						|
     the end */
 | 
						|
  free_blocks.initial_free_list(start, end, (cell)compactor.address - start);
 | 
						|
}
 | 
						|
 | 
						|
/* During compaction we have to be careful and measure object sizes
 | 
						|
   differently */
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator, typename Fixup>
 | 
						|
void free_list_allocator<Block>::iterate(Iterator& iter, Fixup fixup) {
 | 
						|
  cell scan = this->start;
 | 
						|
  while (scan != this->end) {
 | 
						|
    cell size = fixup.size((Block*)scan);
 | 
						|
    if (!((Block*)scan)->free_p())
 | 
						|
      iter((Block*)scan, size);
 | 
						|
    scan += size;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
template <typename Iterator>
 | 
						|
void free_list_allocator<Block>::iterate(Iterator& iter) {
 | 
						|
  iterate(iter, no_fixup());
 | 
						|
}
 | 
						|
 | 
						|
template <typename Block>
 | 
						|
allocator_room free_list_allocator<Block>::as_allocator_room() {
 | 
						|
  allocator_room room;
 | 
						|
 | 
						|
  room.size = size;
 | 
						|
  room.occupied_space = occupied_space();
 | 
						|
  room.total_free = free_space();
 | 
						|
  room.contiguous_free = largest_free_block();
 | 
						|
  room.free_block_count = free_block_count();
 | 
						|
  return room;
 | 
						|
}
 | 
						|
 | 
						|
}
 |