factor/vm/heap.hpp

322 lines
7.0 KiB
C++

namespace factor
{
static const cell free_list_count = 32;
struct heap_free_list {
free_heap_block *small_blocks[free_list_count];
free_heap_block *large_blocks;
};
template<typename Block> struct heap {
bool secure_gc;
segment *seg;
heap_free_list free;
mark_bits<Block> *state;
explicit heap(bool secure_gc_, cell size, bool executable_p);
~heap();
inline Block *first_block()
{
return (Block *)seg->start;
}
inline Block *last_block()
{
return (Block *)seg->end;
}
Block *next_block_after(heap_block *block)
{
return (Block *)((cell)block + block->size());
}
void clear_free_list();
void add_to_free_list(free_heap_block *block);
void build_free_list(cell size);
void assert_free_block(free_heap_block *block);
free_heap_block *find_free_block(cell size);
free_heap_block *split_free_block(free_heap_block *block, cell size);
Block *heap_allot(cell size);
void heap_free(Block *block);
void mark_block(Block *block);
void heap_usage(cell *used, cell *total_free, cell *max_free);
cell heap_size();
template<typename Iterator> void sweep_heap(Iterator &iter);
template<typename Iterator> void compact_heap(Iterator &iter);
template<typename Iterator> void iterate_heap(Iterator &iter)
{
Block *scan = first_block();
Block *end = last_block();
while(scan != end)
{
cell size = scan->size();
Block *next = (Block *)((cell)scan + size);
if(!scan->free_p()) iter(scan,size);
scan = next;
}
}
};
template<typename Block> void heap<Block>::clear_free_list()
{
memset(&free,0,sizeof(heap_free_list));
}
template<typename Block> heap<Block>::heap(bool secure_gc_, cell size, bool executable_p) : secure_gc(secure_gc_)
{
if(size > (1L << (sizeof(cell) * 8 - 6))) fatal_error("Heap too large",size);
seg = new segment(align_page(size),executable_p);
if(!seg) fatal_error("Out of memory in heap allocator",size);
state = new mark_bits<Block>(seg->start,size);
clear_free_list();
}
template<typename Block> heap<Block>::~heap()
{
delete seg;
seg = NULL;
delete state;
state = NULL;
}
template<typename Block> void heap<Block>::add_to_free_list(free_heap_block *block)
{
if(block->size() < free_list_count * block_granularity)
{
int index = block->size() / block_granularity;
block->next_free = free.small_blocks[index];
free.small_blocks[index] = block;
}
else
{
block->next_free = free.large_blocks;
free.large_blocks = block;
}
}
/* Called after reading the code heap from the image file, and after code heap
compaction. Makes a free list consisting of one free block, at the very end. */
template<typename Block> void heap<Block>::build_free_list(cell size)
{
clear_free_list();
free_heap_block *end = (free_heap_block *)(seg->start + size);
end->set_free();
end->set_size(seg->end - (cell)end);
add_to_free_list(end);
}
template<typename Block> void heap<Block>::assert_free_block(free_heap_block *block)
{
#ifdef FACTOR_DEBUG
assert(block->free_p());
#endif
}
template<typename Block> free_heap_block *heap<Block>::find_free_block(cell size)
{
cell attempt = size;
while(attempt < free_list_count * block_granularity)
{
int index = attempt / block_granularity;
free_heap_block *block = free.small_blocks[index];
if(block)
{
assert_free_block(block);
free.small_blocks[index] = block->next_free;
return block;
}
attempt *= 2;
}
free_heap_block *prev = NULL;
free_heap_block *block = free.large_blocks;
while(block)
{
assert_free_block(block);
if(block->size() >= size)
{
if(prev)
prev->next_free = block->next_free;
else
free.large_blocks = block->next_free;
return block;
}
prev = block;
block = block->next_free;
}
return NULL;
}
template<typename Block> free_heap_block *heap<Block>::split_free_block(free_heap_block *block, cell size)
{
if(block->size() != size)
{
/* split the block in two */
free_heap_block *split = (free_heap_block *)((cell)block + size);
split->set_free();
split->set_size(block->size() - size);
split->next_free = block->next_free;
block->set_size(size);
add_to_free_list(split);
}
return block;
}
template<typename Block> Block *heap<Block>::heap_allot(cell size)
{
size = align(size,block_granularity);
free_heap_block *block = find_free_block(size);
if(block)
{
block = split_free_block(block,size);
return (Block *)block;
}
else
return NULL;
}
template<typename Block> void heap<Block>::heap_free(Block *block)
{
free_heap_block *free_block = (free_heap_block *)block;
free_block->set_free();
add_to_free_list(free_block);
}
template<typename Block> void heap<Block>::mark_block(Block *block)
{
state->set_marked_p(block);
}
/* Compute total sum of sizes of free blocks, and size of largest free block */
template<typename Block> void heap<Block>::heap_usage(cell *used, cell *total_free, cell *max_free)
{
*used = 0;
*total_free = 0;
*max_free = 0;
Block *scan = first_block();
Block *end = last_block();
while(scan != end)
{
cell size = scan->size();
if(scan->free_p())
{
*total_free += size;
if(size > *max_free)
*max_free = size;
}
else
*used += size;
scan = next_block_after(scan);
}
}
/* The size of the heap after compaction */
template<typename Block> cell heap<Block>::heap_size()
{
Block *scan = first_block();
Block *end = last_block();
while(scan != end)
{
if(scan->free_p()) break;
else scan = next_block_after(scan);
}
if(scan != end)
{
free_heap_block *free_block = (free_heap_block *)scan;
assert(free_block->free_p());
assert((cell)scan + free_block->size() == seg->end);
return (cell)scan - (cell)first_block();
}
else
return seg->size;
}
/* After code GC, all live code blocks are marked, so any
which are not marked can be reclaimed. */
template<typename Block>
template<typename Iterator>
void heap<Block>::sweep_heap(Iterator &iter)
{
this->clear_free_list();
Block *prev = NULL;
Block *scan = this->first_block();
Block *end = this->last_block();
while(scan != end)
{
cell size = scan->size();
if(scan->free_p())
{
if(prev && prev->free_p())
{
free_heap_block *free_prev = (free_heap_block *)prev;
free_prev->set_size(free_prev->size() + size);
}
else
prev = scan;
}
else if(this->state->is_marked_p(scan))
{
if(prev && prev->free_p())
this->add_to_free_list((free_heap_block *)prev);
prev = scan;
iter(scan,size);
}
else
{
if(prev && prev->free_p())
{
free_heap_block *free_prev = (free_heap_block *)prev;
free_prev->set_size(free_prev->size() + size);
}
else
{
scan->set_free();
prev = scan;
}
}
scan = (Block *)((cell)scan + size);
}
if(prev && prev->free_p())
this->add_to_free_list((free_heap_block *)prev);
}
/* The forwarding map must be computed first by calling
state->compute_forwarding(). */
template<typename Block>
template<typename Iterator>
void heap<Block>::compact_heap(Iterator &iter)
{
heap_compactor<Block,Iterator> compactor(state,first_block(),iter);
this->iterate_heap(compactor);
/* Now update the free list; there will be a single free block at
the end */
this->build_free_list((cell)compactor.address - this->seg->start);
}
}