factor/vm/run.c

346 lines
6.1 KiB
C
Executable File

#include "master.h"
void reset_datastack(void)
{
ds = ds_bot - CELLS;
}
void reset_retainstack(void)
{
rs = rs_bot - CELLS;
}
#define RESERVED (64 * CELLS)
void fix_stacks(void)
{
if(ds + CELLS < ds_bot || ds + RESERVED >= ds_top) reset_datastack();
if(rs + CELLS < rs_bot || rs + RESERVED >= rs_top) reset_retainstack();
}
/* called before entry into foreign C code. Note that ds and rs might
be stored in registers, so callbacks must save and restore the correct values */
void save_stacks(void)
{
stack_chain->datastack = ds;
stack_chain->retainstack = rs;
}
/* called on entry into a compiled callback */
void nest_stacks(void)
{
F_CONTEXT *new_stacks = safe_malloc(sizeof(F_CONTEXT));
new_stacks->callstack_bottom = (F_STACK_FRAME *)-1;
new_stacks->callstack_top = (F_STACK_FRAME *)-1;
/* note that these register values are not necessarily valid stack
pointers. they are merely saved non-volatile registers, and are
restored in unnest_stacks(). consider this scenario:
- factor code calls C function
- C function saves ds/cs registers (since they're non-volatile)
- C function clobbers them
- C function calls Factor callback
- Factor callback returns
- C function restores registers
- C function returns to Factor code */
new_stacks->datastack_save = ds;
new_stacks->retainstack_save = rs;
/* save per-callback userenv */
new_stacks->current_callback_save = userenv[CURRENT_CALLBACK_ENV];
new_stacks->catchstack_save = userenv[CATCHSTACK_ENV];
new_stacks->datastack_region = alloc_segment(ds_size);
new_stacks->retainstack_region = alloc_segment(rs_size);
new_stacks->next = stack_chain;
stack_chain = new_stacks;
reset_datastack();
reset_retainstack();
}
/* called when leaving a compiled callback */
void unnest_stacks(void)
{
dealloc_segment(stack_chain->datastack_region);
dealloc_segment(stack_chain->retainstack_region);
ds = stack_chain->datastack_save;
rs = stack_chain->retainstack_save;
/* restore per-callback userenv */
userenv[CURRENT_CALLBACK_ENV] = stack_chain->current_callback_save;
userenv[CATCHSTACK_ENV] = stack_chain->catchstack_save;
F_CONTEXT *old_stacks = stack_chain;
stack_chain = old_stacks->next;
free(old_stacks);
}
/* called on startup */
void init_stacks(CELL ds_size_, CELL rs_size_)
{
ds_size = ds_size_;
rs_size = rs_size_;
stack_chain = NULL;
}
DEFINE_PRIMITIVE(drop)
{
dpop();
}
DEFINE_PRIMITIVE(2drop)
{
ds -= 2 * CELLS;
}
DEFINE_PRIMITIVE(3drop)
{
ds -= 3 * CELLS;
}
DEFINE_PRIMITIVE(dup)
{
dpush(dpeek());
}
DEFINE_PRIMITIVE(2dup)
{
CELL top = dpeek();
CELL next = get(ds - CELLS);
ds += CELLS * 2;
put(ds - CELLS,next);
put(ds,top);
}
DEFINE_PRIMITIVE(3dup)
{
CELL c1 = dpeek();
CELL c2 = get(ds - CELLS);
CELL c3 = get(ds - CELLS * 2);
ds += CELLS * 3;
put (ds,c1);
put (ds - CELLS,c2);
put (ds - CELLS * 2,c3);
}
DEFINE_PRIMITIVE(rot)
{
CELL c1 = dpeek();
CELL c2 = get(ds - CELLS);
CELL c3 = get(ds - CELLS * 2);
put(ds,c3);
put(ds - CELLS,c1);
put(ds - CELLS * 2,c2);
}
DEFINE_PRIMITIVE(_rot)
{
CELL c1 = dpeek();
CELL c2 = get(ds - CELLS);
CELL c3 = get(ds - CELLS * 2);
put(ds,c2);
put(ds - CELLS,c3);
put(ds - CELLS * 2,c1);
}
DEFINE_PRIMITIVE(dupd)
{
CELL top = dpeek();
CELL next = get(ds - CELLS);
put(ds,next);
put(ds - CELLS,next);
dpush(top);
}
DEFINE_PRIMITIVE(swapd)
{
CELL top = get(ds - CELLS);
CELL next = get(ds - CELLS * 2);
put(ds - CELLS,next);
put(ds - CELLS * 2,top);
}
DEFINE_PRIMITIVE(nip)
{
CELL top = dpop();
drepl(top);
}
DEFINE_PRIMITIVE(2nip)
{
CELL top = dpeek();
ds -= CELLS * 2;
drepl(top);
}
DEFINE_PRIMITIVE(tuck)
{
CELL top = dpeek();
CELL next = get(ds - CELLS);
put(ds,next);
put(ds - CELLS,top);
dpush(top);
}
DEFINE_PRIMITIVE(over)
{
dpush(get(ds - CELLS));
}
DEFINE_PRIMITIVE(pick)
{
dpush(get(ds - CELLS * 2));
}
DEFINE_PRIMITIVE(swap)
{
CELL top = dpeek();
CELL next = get(ds - CELLS);
put(ds,next);
put(ds - CELLS,top);
}
DEFINE_PRIMITIVE(to_r)
{
rpush(dpop());
}
DEFINE_PRIMITIVE(from_r)
{
dpush(rpop());
}
bool stack_to_array(CELL bottom, CELL top)
{
F_FIXNUM depth = (F_FIXNUM)(top - bottom + CELLS);
if(depth < 0)
return false;
else
{
F_ARRAY *a = allot_array_internal(ARRAY_TYPE,depth / CELLS);
memcpy(a + 1,(void*)bottom,depth);
dpush(tag_object(a));
return true;
}
}
DEFINE_PRIMITIVE(datastack)
{
if(!stack_to_array(ds_bot,ds))
general_error(ERROR_DS_UNDERFLOW,F,F,NULL);
}
DEFINE_PRIMITIVE(retainstack)
{
if(!stack_to_array(rs_bot,rs))
general_error(ERROR_RS_UNDERFLOW,F,F,NULL);
}
/* returns pointer to top of stack */
CELL array_to_stack(F_ARRAY *array, CELL bottom)
{
CELL depth = array_capacity(array) * CELLS;
memcpy((void*)bottom,array + 1,depth);
return bottom + depth - CELLS;
}
DEFINE_PRIMITIVE(set_datastack)
{
ds = array_to_stack(untag_array(dpop()),ds_bot);
}
DEFINE_PRIMITIVE(set_retainstack)
{
rs = array_to_stack(untag_array(dpop()),rs_bot);
}
DEFINE_PRIMITIVE(getenv)
{
F_FIXNUM e = untag_fixnum_fast(dpeek());
drepl(userenv[e]);
}
DEFINE_PRIMITIVE(setenv)
{
F_FIXNUM e = untag_fixnum_fast(dpop());
CELL value = dpop();
userenv[e] = value;
}
DEFINE_PRIMITIVE(exit)
{
exit(to_fixnum(dpop()));
}
DEFINE_PRIMITIVE(os_env)
{
char *name = unbox_char_string();
char *value = getenv(name);
if(value == NULL)
dpush(F);
else
box_char_string(value);
}
DEFINE_PRIMITIVE(eq)
{
CELL lhs = dpop();
CELL rhs = dpeek();
drepl((lhs == rhs) ? T : F);
}
DEFINE_PRIMITIVE(millis)
{
box_unsigned_8(current_millis());
}
DEFINE_PRIMITIVE(sleep)
{
sleep_millis(to_cell(dpop()));
}
DEFINE_PRIMITIVE(type)
{
drepl(tag_fixnum(type_of(dpeek())));
}
DEFINE_PRIMITIVE(tag)
{
drepl(tag_fixnum(TAG(dpeek())));
}
DEFINE_PRIMITIVE(class_hash)
{
CELL obj = dpeek();
CELL tag = TAG(obj);
if(tag == TUPLE_TYPE)
{
F_WORD *class = untag_object(get(SLOT(obj,2)));
drepl(class->hashcode);
}
else if(tag == OBJECT_TYPE)
drepl(get(UNTAG(obj)));
else
drepl(tag_fixnum(tag));
}
DEFINE_PRIMITIVE(slot)
{
F_FIXNUM slot = untag_fixnum_fast(dpop());
CELL obj = dpop();
dpush(get(SLOT(obj,slot)));
}
DEFINE_PRIMITIVE(set_slot)
{
F_FIXNUM slot = untag_fixnum_fast(dpop());
CELL obj = dpop();
CELL value = dpop();
set_slot(obj,slot,value);
}