factor/vm/heap.cpp

236 lines
4.8 KiB
C++

#include "master.hpp"
/* This malloc-style heap code is reasonably generic. Maybe in the future, it
will be used for the data heap too, if we ever get mark/sweep/compact GC. */
namespace factor
{
void heap::clear_free_list()
{
memset(&free,0,sizeof(heap_free_list));
}
heap::heap(bool secure_gc_, cell size, bool executable_p) : secure_gc(secure_gc_)
{
if(size > (1L << (sizeof(cell) * 8 - 6))) fatal_error("Heap too large",size);
seg = new segment(align_page(size),executable_p);
if(!seg) fatal_error("Out of memory in heap allocator",size);
state = new mark_bits<heap_block,block_size_increment>(seg->start,size);
clear_free_list();
}
heap::~heap()
{
delete seg;
seg = NULL;
delete state;
state = NULL;
}
void heap::add_to_free_list(free_heap_block *block)
{
if(block->size() < free_list_count * block_size_increment)
{
int index = block->size() / block_size_increment;
block->next_free = free.small_blocks[index];
free.small_blocks[index] = block;
}
else
{
block->next_free = free.large_blocks;
free.large_blocks = block;
}
}
/* Called after reading the code heap from the image file, and after code heap
compaction. Makes a free list consisting of one free block, at the very end. */
void heap::build_free_list(cell size)
{
clear_free_list();
free_heap_block *end = (free_heap_block *)(seg->start + size);
end->set_type(FREE_BLOCK_TYPE);
end->set_size(seg->end - (cell)end);
add_to_free_list(end);
}
void heap::assert_free_block(free_heap_block *block)
{
if(block->type() != FREE_BLOCK_TYPE)
critical_error("Invalid block in free list",(cell)block);
}
free_heap_block *heap::find_free_block(cell size)
{
cell attempt = size;
while(attempt < free_list_count * block_size_increment)
{
int index = attempt / block_size_increment;
free_heap_block *block = free.small_blocks[index];
if(block)
{
assert_free_block(block);
free.small_blocks[index] = block->next_free;
return block;
}
attempt *= 2;
}
free_heap_block *prev = NULL;
free_heap_block *block = free.large_blocks;
while(block)
{
assert_free_block(block);
if(block->size() >= size)
{
if(prev)
prev->next_free = block->next_free;
else
free.large_blocks = block->next_free;
return block;
}
prev = block;
block = block->next_free;
}
return NULL;
}
free_heap_block *heap::split_free_block(free_heap_block *block, cell size)
{
if(block->size() != size )
{
/* split the block in two */
free_heap_block *split = (free_heap_block *)((cell)block + size);
split->set_type(FREE_BLOCK_TYPE);
split->set_size(block->size() - size);
split->next_free = block->next_free;
block->set_size(size);
add_to_free_list(split);
}
return block;
}
/* Allocate a block of memory from the mark and sweep GC heap */
heap_block *heap::heap_allot(cell size, cell type)
{
size = (size + block_size_increment - 1) & ~(block_size_increment - 1);
free_heap_block *block = find_free_block(size);
if(block)
{
block = split_free_block(block,size);
block->set_type(type);
return block;
}
else
return NULL;
}
/* Deallocates a block manually */
void heap::heap_free(heap_block *block)
{
block->set_type(FREE_BLOCK_TYPE);
add_to_free_list((free_heap_block *)block);
}
void heap::mark_block(heap_block *block)
{
state->set_marked_p(block,true);
}
/* Compute total sum of sizes of free blocks, and size of largest free block */
void heap::heap_usage(cell *used, cell *total_free, cell *max_free)
{
*used = 0;
*total_free = 0;
*max_free = 0;
heap_block *scan = first_block();
while(scan)
{
cell size = scan->size();
if(scan->type() == FREE_BLOCK_TYPE)
{
*total_free += size;
if(size > *max_free)
*max_free = size;
}
else
*used += size;
scan = next_block(scan);
}
}
/* The size of the heap after compaction */
cell heap::heap_size()
{
heap_block *scan = first_block();
while(scan)
{
if(scan->type() == FREE_BLOCK_TYPE) break;
else scan = next_block(scan);
}
assert(scan->type() == FREE_BLOCK_TYPE);
assert((cell)scan + scan->size() == seg->end);
return (cell)scan - (cell)first_block();
}
void heap::compact_heap()
{
forwarding.clear();
heap_block *scan = first_block();
char *address = (char *)scan;
/* Slide blocks up while building the forwarding hashtable. */
while(scan)
{
heap_block *next = next_block(scan);
if(state->is_marked_p(scan))
{
cell size = scan->size();
memmove(address,scan,size);
forwarding[scan] = address;
address += size;
}
scan = next;
}
/* Now update the free list; there will be a single free block at
the end */
build_free_list((cell)address - seg->start);
}
heap_block *heap::free_allocated(heap_block *prev, heap_block *scan)
{
if(secure_gc)
memset(scan + 1,0,scan->size() - sizeof(heap_block));
if(prev && prev->type() == FREE_BLOCK_TYPE)
{
prev->set_size(prev->size() + scan->size());
return prev;
}
else
{
scan->set_type(FREE_BLOCK_TYPE);
return scan;
}
}
}