104 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Factor
		
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Factor
		
	
	
! Copyright (C) 2007-2009 Samuel Tardieu.
 | 
						|
! See http://factorcode.org/license.txt for BSD license.
 | 
						|
USING: combinators combinators.short-circuit fry kernel locals
 | 
						|
math math.bitwise math.functions math.order math.primes.erato
 | 
						|
math.primes.erato.private math.primes.miller-rabin math.ranges
 | 
						|
literals random sequences sets vectors ;
 | 
						|
IN: math.primes
 | 
						|
 | 
						|
<PRIVATE
 | 
						|
 | 
						|
: look-in-bitmap ( n -- ? )
 | 
						|
    integer>fixnum $[ 8,999,999 sieve ] marked-unsafe? ; inline
 | 
						|
 | 
						|
: (prime?) ( n -- ? )
 | 
						|
    dup 8,999,999 <= [ look-in-bitmap ] [ miller-rabin ] if ;
 | 
						|
 | 
						|
: simple? ( n -- ? )
 | 
						|
    { [ even? ] [ 3 divisor? ] [ 5 divisor? ] } 1|| ;
 | 
						|
 | 
						|
PRIVATE>
 | 
						|
 | 
						|
: prime? ( n -- ? )
 | 
						|
    {
 | 
						|
        { [ dup 7 < ] [ { 2 3 5 } member? ] }
 | 
						|
        { [ dup simple? ] [ drop f ] }
 | 
						|
        [ (prime?) ]
 | 
						|
    } cond ; foldable
 | 
						|
 | 
						|
: next-prime ( n -- p )
 | 
						|
    dup 2 < [
 | 
						|
        drop 2
 | 
						|
    ] [
 | 
						|
        next-odd [ dup prime? ] [ 2 + ] until
 | 
						|
    ] if ; foldable
 | 
						|
 | 
						|
<PRIVATE
 | 
						|
 | 
						|
: <primes-range> ( low high -- range )
 | 
						|
    [ 3 max dup even? [ 1 + ] when ] dip 2 <range> ;
 | 
						|
 | 
						|
! In order not to reallocate large vectors, we compute the upper
 | 
						|
! bound of the number of primes in a given interval. We use a
 | 
						|
! double inequality given by Pierre Dusart in
 | 
						|
! http://www.ams.org/mathscinet-getitem?mr=99d:11133 for x >
 | 
						|
! 598. Under this limit, we know that there are at most 108
 | 
						|
! primes.
 | 
						|
: upper-pi ( x -- y )
 | 
						|
    dup log [ / ] [ 1.2762 swap / 1 + ] bi * ceiling ;
 | 
						|
 | 
						|
: lower-pi ( x -- y )
 | 
						|
    dup log [ / ] [ 0.992 swap / 1 + ] bi * floor ;
 | 
						|
 | 
						|
:: <primes-vector> ( low high -- vector )
 | 
						|
    high upper-pi low lower-pi - >integer
 | 
						|
    108 10000 clamp <vector>
 | 
						|
    low 3 < [ 2 suffix! ] when ;
 | 
						|
 | 
						|
: (primes-between) ( low high -- seq )
 | 
						|
    [ <primes-range> ] [ <primes-vector> ] 2bi
 | 
						|
    [ '[ [ prime? ] _ push-if ] each ] keep ;
 | 
						|
 | 
						|
PRIVATE>
 | 
						|
 | 
						|
: primes-between ( low high -- seq )
 | 
						|
    [ ceiling >integer ] [ floor >integer ] bi*
 | 
						|
    {
 | 
						|
        { [ 2dup > ] [ 2drop V{ } clone ] }
 | 
						|
        { [ dup 2 = ] [ 2drop V{ 2 } clone ] }
 | 
						|
        { [ dup 2 < ] [ 2drop V{ } clone ] }
 | 
						|
        [ (primes-between) ]
 | 
						|
    } cond ;
 | 
						|
 | 
						|
: primes-upto ( n -- seq )
 | 
						|
    2 swap primes-between ;
 | 
						|
 | 
						|
: nprimes ( n -- seq )
 | 
						|
    2 swap [ [ next-prime ] keep ] replicate nip ;
 | 
						|
 | 
						|
: coprime? ( a b -- ? ) simple-gcd 1 = ; foldable
 | 
						|
 | 
						|
: random-prime ( numbits -- p )
 | 
						|
    [ ] [ 2^ ] [ random-bits* next-prime ] tri
 | 
						|
    2dup < [ 2drop random-prime ] [ 2nip ] if ;
 | 
						|
 | 
						|
: estimated-primes ( m -- n )
 | 
						|
    dup log / ; foldable
 | 
						|
 | 
						|
ERROR: no-relative-prime n ;
 | 
						|
 | 
						|
: find-relative-prime* ( n guess -- p )
 | 
						|
    [ dup 1 <= [ no-relative-prime ] when ]
 | 
						|
    [ >odd dup 1 <= [ drop 3 ] when ] bi*
 | 
						|
    [ 2dup coprime? ] [ 2 + ] until nip ;
 | 
						|
 | 
						|
: find-relative-prime ( n -- p )
 | 
						|
    dup random find-relative-prime* ;
 | 
						|
 | 
						|
ERROR: too-few-primes n numbits ;
 | 
						|
 | 
						|
: unique-primes ( n numbits -- seq )
 | 
						|
    2dup 2^ estimated-primes > [ too-few-primes ] when
 | 
						|
    2dup [ random-prime ] curry replicate
 | 
						|
    dup all-unique? [ 2nip ] [ drop unique-primes ] if ;
 |