303 lines
7.4 KiB
Factor
Executable File
303 lines
7.4 KiB
Factor
Executable File
! Copyright (C) 2006, 2007 Slava Pestov.
|
|
! See http://factorcode.org/license.txt for BSD license.
|
|
USING: arrays assocs hashtables assocs io kernel math
|
|
math.vectors math.matrices math.matrices.elimination namespaces
|
|
parser prettyprint sequences words combinators math.parser
|
|
splitting sorting shuffle ;
|
|
IN: koszul
|
|
|
|
! Utilities
|
|
: SYMBOLS:
|
|
";" parse-tokens [ create-in define-symbol ] each ;
|
|
parsing
|
|
|
|
: -1^ odd? -1 1 ? ;
|
|
|
|
: >alt ( obj -- vec )
|
|
{
|
|
{ [ dup not ] [ drop 0 >alt ] }
|
|
{ [ dup number? ] [ { } associate ] }
|
|
{ [ dup array? ] [ 1 swap associate ] }
|
|
{ [ dup hashtable? ] [ ] }
|
|
{ [ t ] [ 1array >alt ] }
|
|
} cond ;
|
|
|
|
: canonicalize
|
|
[ nip zero? not ] assoc-subset ;
|
|
|
|
SYMBOL: terms
|
|
|
|
: with-terms ( quot -- hash )
|
|
[
|
|
H{ } clone terms set call terms get canonicalize
|
|
] with-scope ; inline
|
|
|
|
! Printing elements
|
|
: num-alt. ( n -- str )
|
|
{
|
|
{ [ dup 1 = ] [ drop " + " ] }
|
|
{ [ dup -1 = ] [ drop " - " ] }
|
|
{ [ t ] [ number>string " + " swap append ] }
|
|
} cond ;
|
|
|
|
: (alt.) ( basis n -- str )
|
|
over empty? [
|
|
nip number>string
|
|
] [
|
|
num-alt.
|
|
swap [ word-name ] map "." join
|
|
append
|
|
] if ;
|
|
|
|
: alt. ( assoc -- )
|
|
dup assoc-empty? [
|
|
drop 0 .
|
|
] [
|
|
[ (alt.) ] { } assoc>map concat " + " ?head drop print
|
|
] if ;
|
|
|
|
! Addition
|
|
: (alt+) ( x -- )
|
|
terms get [ [ swap +@ ] assoc-each ] bind ;
|
|
|
|
: alt+ ( x y -- x+y )
|
|
[ >alt ] 2apply [ (alt+) (alt+) ] with-terms ;
|
|
|
|
! Multiplication
|
|
: alt*n ( vec n -- vec )
|
|
dup zero? [
|
|
2drop H{ }
|
|
] [
|
|
[ * ] curry assoc-map
|
|
] if ;
|
|
|
|
: permutation ( seq -- perm )
|
|
[ natural-sort ] keep [ index ] curry map ;
|
|
|
|
: (inversions) ( n seq -- n )
|
|
[ > ] with subset length ;
|
|
|
|
: inversions ( seq -- n )
|
|
0 swap [ length ] keep [
|
|
[ nth ] 2keep swap 1+ tail-slice (inversions) +
|
|
] curry each ;
|
|
|
|
: duplicates? ( seq -- ? )
|
|
dup prune [ length ] 2apply > ;
|
|
|
|
: (wedge) ( n basis1 basis2 -- n basis )
|
|
append dup duplicates? [
|
|
2drop 0 { }
|
|
] [
|
|
dup permutation inversions -1^ rot *
|
|
swap natural-sort
|
|
] if ;
|
|
|
|
: wedge ( x y -- x.y )
|
|
[ >alt ] 2apply [
|
|
swap [
|
|
[
|
|
2swap [
|
|
swapd * -rot (wedge) +@
|
|
] 2keep
|
|
] assoc-each 2drop
|
|
] curry assoc-each
|
|
] H{ } make-assoc canonicalize ;
|
|
|
|
! Differential
|
|
SYMBOL: boundaries
|
|
|
|
: d= ( value basis -- )
|
|
boundaries [ ?set-at ] change ;
|
|
|
|
: ((d)) ( basis -- value ) boundaries get at ;
|
|
|
|
: dx.y ( x y -- vec ) >r ((d)) r> wedge ;
|
|
|
|
DEFER: (d)
|
|
|
|
: x.dy ( x y -- vec ) (d) wedge -1 alt*n ;
|
|
|
|
: (d) ( product -- value )
|
|
dup empty?
|
|
[ drop H{ } ] [ unclip swap [ x.dy ] 2keep dx.y alt+ ] if ;
|
|
|
|
: linear-op ( vec quot -- vec )
|
|
[
|
|
[
|
|
-rot >r swap call r> alt*n (alt+)
|
|
] curry assoc-each
|
|
] with-terms ; inline
|
|
|
|
: d ( x -- dx )
|
|
>alt [ (d) ] linear-op ;
|
|
|
|
! Interior product
|
|
: (interior) ( y basis-elt -- i_y[basis-elt] )
|
|
2dup index dup [
|
|
-rot remove associate
|
|
] [
|
|
3drop 0
|
|
] if ;
|
|
|
|
: interior ( x y -- i_y[x] )
|
|
#! y is a generator
|
|
swap >alt [ dupd (interior) ] linear-op nip ;
|
|
|
|
! Computing a basis
|
|
: graded ( seq -- seq )
|
|
dup 0 [ length max ] reduce 1+ [ drop V{ } clone ] map
|
|
[ dup length pick nth push ] reduce ;
|
|
|
|
: nth-basis-elt ( generators n -- elt )
|
|
over length [
|
|
3dup bit? [ nth ] [ 2drop f ] if
|
|
] map [ ] subset 2nip ;
|
|
|
|
: basis ( generators -- seq )
|
|
natural-sort dup length 2^ [ nth-basis-elt ] with map ;
|
|
|
|
: (tensor) ( seq1 seq2 -- seq )
|
|
[
|
|
[ swap append natural-sort ] curry map
|
|
] with map concat ;
|
|
|
|
: tensor ( graded-basis1 graded-basis2 -- bigraded-basis )
|
|
[ [ swap (tensor) ] curry map ] with map ;
|
|
|
|
! Computing cohomology
|
|
: (op-matrix) ( range quot basis-elt -- row )
|
|
swap call [ at 0 or ] curry map ; inline
|
|
|
|
: op-matrix ( domain range quot -- matrix )
|
|
rot [ >r 2dup r> (op-matrix) ] map 2nip ; inline
|
|
|
|
: d-matrix ( domain range -- matrix )
|
|
[ (d) ] op-matrix ;
|
|
|
|
: dim-im/ker-d ( domain range -- null/rank )
|
|
d-matrix null/rank 2array ;
|
|
|
|
! Graded by degree
|
|
: (graded-ker/im-d) ( n seq -- null/rank )
|
|
#! d: C(n) ---> C(n+1)
|
|
[ ?nth ] 2keep >r 1+ r> ?nth
|
|
dim-im/ker-d ;
|
|
|
|
: graded-ker/im-d ( graded-basis -- seq )
|
|
[ length ] keep [ (graded-ker/im-d) ] curry map ;
|
|
|
|
: graded-betti ( generators -- seq )
|
|
basis graded graded-ker/im-d flip first2 1 head* 0 add* v- ;
|
|
|
|
! Bi-graded for two-step complexes
|
|
: (bigraded-ker/im-d) ( u-deg z-deg bigraded-basis -- null/rank )
|
|
#! d: C(u,z) ---> C(u+2,z-1)
|
|
[ ?nth ?nth ] 3keep >r >r 2 + r> 1 - r> ?nth ?nth
|
|
dim-im/ker-d ;
|
|
|
|
: bigraded-ker/im-d ( bigraded-basis -- seq )
|
|
dup length [
|
|
over first length [
|
|
>r 2dup r> spin (bigraded-ker/im-d)
|
|
] map 2nip
|
|
] with map ;
|
|
|
|
: bigraded-betti ( u-generators z-generators -- seq )
|
|
[ basis graded ] 2apply tensor bigraded-ker/im-d
|
|
[ [ [ first ] map ] map ] keep
|
|
[ [ second ] map 2 head* { 0 0 } swap append ] map
|
|
1 tail dup first length 0 <array> add
|
|
[ v- ] 2map ;
|
|
|
|
! Laplacian
|
|
: m.m' dup flip m. ;
|
|
: m'.m dup flip swap m. ;
|
|
|
|
: empty-matrix? ( matrix -- ? )
|
|
dup empty? [ drop t ] [ first empty? ] if ;
|
|
|
|
: ?m+ ( m1 m2 -- m3 )
|
|
over empty-matrix? [
|
|
nip
|
|
] [
|
|
dup empty-matrix? [
|
|
drop
|
|
] [
|
|
m+
|
|
] if
|
|
] if ;
|
|
|
|
: laplacian-matrix ( basis1 basis2 basis3 -- matrix )
|
|
dupd d-matrix m.m' >r d-matrix m'.m r> ?m+ ;
|
|
|
|
: laplacian-betti ( basis1 basis2 basis3 -- n )
|
|
laplacian-matrix null/rank drop ;
|
|
|
|
: laplacian-kernel ( basis1 basis2 basis3 -- basis )
|
|
>r tuck r>
|
|
laplacian-matrix dup empty-matrix? [
|
|
2drop f
|
|
] [
|
|
nullspace [
|
|
[ [ wedge (alt+) ] 2each ] with-terms
|
|
] with map
|
|
] if ;
|
|
|
|
: graded-triple ( seq n -- triple )
|
|
3 [ 1- + ] with map swap [ ?nth ] curry map ;
|
|
|
|
: graded-triples ( seq -- triples )
|
|
dup length [ graded-triple ] with map ;
|
|
|
|
: graded-laplacian ( generators quot -- seq )
|
|
>r basis graded graded-triples [ first3 ] r> compose map ;
|
|
inline
|
|
|
|
: graded-laplacian-betti ( generators -- seq )
|
|
[ laplacian-betti ] graded-laplacian ;
|
|
|
|
: graded-laplacian-kernel ( generators -- seq )
|
|
[ laplacian-kernel ] graded-laplacian ;
|
|
|
|
: graded-basis. ( seq -- )
|
|
dup length [
|
|
"=== Degree " write pprint
|
|
": dimension " write dup length .
|
|
[ alt. ] each
|
|
] 2each ;
|
|
|
|
: bigraded-triple ( u-deg z-deg bigraded-basis -- triple )
|
|
#! d: C(u,z) ---> C(u+2,z-1)
|
|
[ >r >r 2 - r> 1 + r> ?nth ?nth ] 3keep
|
|
[ ?nth ?nth ] 3keep
|
|
>r >r 2 + r> 1 - r> ?nth ?nth
|
|
3array ;
|
|
|
|
: bigraded-triples ( grid -- triples )
|
|
dup length [
|
|
over first length [
|
|
>r 2dup r> spin bigraded-triple
|
|
] map 2nip
|
|
] with map ;
|
|
|
|
: bigraded-laplacian ( u-generators z-generators quot -- seq )
|
|
>r [ basis graded ] 2apply tensor bigraded-triples r>
|
|
[ [ first3 ] swap compose map ] curry map ; inline
|
|
|
|
: bigraded-laplacian-betti ( u-generators z-generators -- seq )
|
|
[ laplacian-betti ] bigraded-laplacian ;
|
|
|
|
: bigraded-laplacian-kernel ( u-generators z-generators -- seq )
|
|
[ laplacian-kernel ] bigraded-laplacian ;
|
|
|
|
: bigraded-basis. ( seq -- )
|
|
dup length [
|
|
"=== U-degree " write .
|
|
dup length [
|
|
" === Z-degree " write pprint
|
|
": dimension " write dup length .
|
|
[ " " write alt. ] each
|
|
] 2each
|
|
] 2each ;
|