factor/vm/os-unix.cpp

559 lines
14 KiB
C++
Executable File

#include "master.hpp"
namespace factor
{
THREADHANDLE start_thread(void *(*start_routine)(void *),void *args)
{
pthread_attr_t attr;
pthread_t thread;
if (pthread_attr_init (&attr) != 0)
fatal_error("pthread_attr_init() failed",0);
if (pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_JOINABLE) != 0)
fatal_error("pthread_attr_setdetachstate() failed",0);
if (pthread_create (&thread, &attr, start_routine, args) != 0)
fatal_error("pthread_create() failed",0);
pthread_attr_destroy(&attr);
return thread;
}
static void *null_dll;
void sleep_nanos(u64 nsec)
{
timespec ts;
timespec ts_rem;
int ret;
ts.tv_sec = nsec / 1000000000;
ts.tv_nsec = nsec % 1000000000;
ret = nanosleep(&ts,&ts_rem);
while(ret == -1 && errno == EINTR)
{
memcpy(&ts, &ts_rem, sizeof(ts));
ret = nanosleep(&ts, &ts_rem);
}
if(ret == -1)
fatal_error("nanosleep failed", 0);
}
void factor_vm::init_ffi()
{
null_dll = dlopen(NULL,RTLD_LAZY);
}
void factor_vm::ffi_dlopen(dll *dll)
{
dll->handle = dlopen(alien_offset(dll->path), RTLD_LAZY);
}
void *factor_vm::ffi_dlsym_raw(dll *dll, symbol_char *symbol)
{
return dlsym(dll ? dll->handle : null_dll, symbol);
}
void *factor_vm::ffi_dlsym(dll *dll, symbol_char *symbol)
{
return FUNCTION_CODE_POINTER(ffi_dlsym_raw(dll, symbol));
}
#ifdef FACTOR_PPC
void *factor_vm::ffi_dlsym_toc(dll *dll, symbol_char *symbol)
{
return FUNCTION_TOC_POINTER(ffi_dlsym_raw(dll, symbol));
}
#endif
void factor_vm::ffi_dlclose(dll *dll)
{
if(dlclose(dll->handle))
general_error(ERROR_FFI,false_object,false_object);
dll->handle = NULL;
}
void factor_vm::primitive_existsp()
{
struct stat sb;
char *path = (char *)(untag_check<byte_array>(ctx->pop()) + 1);
ctx->push(tag_boolean(stat(path,&sb) >= 0));
}
void factor_vm::move_file(const vm_char *path1, const vm_char *path2)
{
int ret = 0;
do
{
ret = rename((path1),(path2));
}
while(ret < 0 && errno == EINTR);
if(ret < 0)
general_error(ERROR_IO,tag_fixnum(errno),false_object);
}
segment::segment(cell size_, bool executable_p)
{
size = size_;
int pagesize = getpagesize();
int prot;
if(executable_p)
prot = (PROT_READ | PROT_WRITE | PROT_EXEC);
else
prot = (PROT_READ | PROT_WRITE);
char *array = (char *)mmap(NULL,pagesize + size + pagesize,prot,MAP_ANON | MAP_PRIVATE,-1,0);
if(array == (char*)-1) out_of_memory();
if(mprotect(array,pagesize,PROT_NONE) == -1)
fatal_error("Cannot protect low guard page",(cell)array);
if(mprotect(array + pagesize + size,pagesize,PROT_NONE) == -1)
fatal_error("Cannot protect high guard page",(cell)array);
start = (cell)(array + pagesize);
end = start + size;
}
segment::~segment()
{
int pagesize = getpagesize();
int retval = munmap((void*)(start - pagesize),pagesize + size + pagesize);
if(retval)
fatal_error("Segment deallocation failed",0);
}
void code_heap::guard_safepoint()
{
if(mprotect(safepoint_page,getpagesize(),PROT_NONE) == -1)
fatal_error("Cannot protect safepoint guard page",(cell)safepoint_page);
}
void code_heap::unguard_safepoint()
{
if(mprotect(safepoint_page,getpagesize(),PROT_WRITE) == -1)
fatal_error("Cannot unprotect safepoint guard page",(cell)safepoint_page);
}
void factor_vm::dispatch_signal(void *uap, void (handler)())
{
dispatch_signal_handler(
(cell*)&UAP_STACK_POINTER(uap),
(cell*)&UAP_PROGRAM_COUNTER(uap),
(cell)FUNCTION_CODE_POINTER(handler)
);
UAP_SET_TOC_POINTER(uap, (cell)FUNCTION_TOC_POINTER(handler));
}
void factor_vm::start_sampling_profiler_timer()
{
struct itimerval timer;
memset((void*)&timer, 0, sizeof(struct itimerval));
timer.it_value.tv_usec = 1000000/samples_per_second;
timer.it_interval.tv_usec = 1000000/samples_per_second;
setitimer(ITIMER_REAL, &timer, NULL);
}
void factor_vm::end_sampling_profiler_timer()
{
struct itimerval timer;
memset((void*)&timer, 0, sizeof(struct itimerval));
setitimer(ITIMER_REAL, &timer, NULL);
}
void memory_signal_handler(int signal, siginfo_t *siginfo, void *uap)
{
factor_vm *vm = current_vm();
vm->verify_memory_protection_error((cell)siginfo->si_addr);
vm->signal_fault_addr = (cell)siginfo->si_addr;
vm->signal_fault_pc = (cell)UAP_PROGRAM_COUNTER(uap);
vm->dispatch_signal(uap,factor::memory_signal_handler_impl);
}
void synchronous_signal_handler(int signal, siginfo_t *siginfo, void *uap)
{
if (factor_vm::fatal_erroring_p)
return;
factor_vm *vm = current_vm_p();
if (vm)
{
vm->signal_number = signal;
vm->dispatch_signal(uap,factor::synchronous_signal_handler_impl);
}
else
fatal_error("Foreign thread received signal", signal);
}
void safe_write_nonblock(int fd, void *data, ssize_t size);
static void enqueue_signal(factor_vm *vm, int signal)
{
if (vm->signal_pipe_output != 0)
safe_write_nonblock(vm->signal_pipe_output, &signal, sizeof(int));
}
void enqueue_signal_handler(int signal, siginfo_t *siginfo, void *uap)
{
if (factor_vm::fatal_erroring_p)
return;
factor_vm *vm = current_vm_p();
if (vm)
enqueue_signal(vm, signal);
}
void fep_signal_handler(int signal, siginfo_t *siginfo, void *uap)
{
if (factor_vm::fatal_erroring_p)
return;
factor_vm *vm = current_vm_p();
if (vm)
{
vm->safepoint.enqueue_fep(vm);
enqueue_signal(vm, signal);
}
else
fatal_error("Foreign thread received signal", signal);
}
void sample_signal_handler(int signal, siginfo_t *siginfo, void *uap)
{
factor_vm *vm = current_vm_p();
bool foreign_thread = false;
if (vm == NULL)
{
foreign_thread = true;
vm = thread_vms.begin()->second;
}
if (atomic::load(&vm->sampling_profiler_p))
vm->safepoint.enqueue_samples(vm, 1, (cell)UAP_PROGRAM_COUNTER(uap), foreign_thread);
else if (!foreign_thread)
enqueue_signal(vm, signal);
}
void ignore_signal_handler(int signal, siginfo_t *siginfo, void *uap)
{
}
void fpe_signal_handler(int signal, siginfo_t *siginfo, void *uap)
{
factor_vm *vm = current_vm();
vm->signal_number = signal;
vm->signal_fpu_status = fpu_status(uap_fpu_status(uap));
uap_clear_fpu_status(uap);
vm->dispatch_signal(uap,
(siginfo->si_code == FPE_INTDIV || siginfo->si_code == FPE_INTOVF)
? factor::synchronous_signal_handler_impl
: factor::fp_signal_handler_impl);
}
static void sigaction_safe(int signum, const struct sigaction *act, struct sigaction *oldact)
{
int ret;
do
{
ret = sigaction(signum, act, oldact);
}
while(ret == -1 && errno == EINTR);
if(ret == -1)
fatal_error("sigaction failed", errno);
}
static void init_sigaction_with_handler(struct sigaction *act,
void (*handler)(int, siginfo_t*, void*))
{
memset(act, 0, sizeof(struct sigaction));
sigemptyset(&act->sa_mask);
act->sa_sigaction = handler;
act->sa_flags = SA_SIGINFO | SA_ONSTACK;
}
static void safe_pipe(int *in, int *out)
{
int filedes[2];
if(pipe(filedes) < 0)
fatal_error("Error opening pipe",errno);
*in = filedes[0];
*out = filedes[1];
if(fcntl(*in,F_SETFD,FD_CLOEXEC) < 0)
fatal_error("Error with fcntl",errno);
if(fcntl(*out,F_SETFD,FD_CLOEXEC) < 0)
fatal_error("Error with fcntl",errno);
}
static void init_signal_pipe(factor_vm *vm)
{
safe_pipe(&vm->signal_pipe_input, &vm->signal_pipe_output);
if(fcntl(vm->signal_pipe_output,F_SETFL,O_NONBLOCK) < 0)
fatal_error("Error with fcntl",errno);
vm->special_objects[OBJ_SIGNAL_PIPE] = tag_fixnum(vm->signal_pipe_input);
}
void factor_vm::unix_init_signals()
{
init_signal_pipe(this);
signal_callstack_seg = new segment(callstack_size,false);
stack_t signal_callstack;
signal_callstack.ss_sp = (char *)signal_callstack_seg->start;
signal_callstack.ss_size = signal_callstack_seg->size;
signal_callstack.ss_flags = 0;
if(sigaltstack(&signal_callstack,(stack_t *)NULL) < 0)
fatal_error("sigaltstack() failed",0);
struct sigaction memory_sigaction;
struct sigaction synchronous_sigaction;
struct sigaction enqueue_sigaction;
struct sigaction sample_sigaction;
struct sigaction fpe_sigaction;
struct sigaction ignore_sigaction;
init_sigaction_with_handler(&memory_sigaction, memory_signal_handler);
sigaction_safe(SIGBUS,&memory_sigaction,NULL);
sigaction_safe(SIGSEGV,&memory_sigaction,NULL);
sigaction_safe(SIGTRAP,&memory_sigaction,NULL);
init_sigaction_with_handler(&fpe_sigaction, fpe_signal_handler);
sigaction_safe(SIGFPE,&fpe_sigaction,NULL);
init_sigaction_with_handler(&synchronous_sigaction, synchronous_signal_handler);
sigaction_safe(SIGILL,&synchronous_sigaction,NULL);
sigaction_safe(SIGABRT,&synchronous_sigaction,NULL);
init_sigaction_with_handler(&enqueue_sigaction, enqueue_signal_handler);
sigaction_safe(SIGWINCH,&enqueue_sigaction,NULL);
sigaction_safe(SIGUSR1,&enqueue_sigaction,NULL);
sigaction_safe(SIGCONT,&enqueue_sigaction,NULL);
sigaction_safe(SIGURG,&enqueue_sigaction,NULL);
sigaction_safe(SIGIO,&enqueue_sigaction,NULL);
sigaction_safe(SIGPROF,&enqueue_sigaction,NULL);
sigaction_safe(SIGVTALRM,&enqueue_sigaction,NULL);
#ifdef SIGINFO
sigaction_safe(SIGINFO,&enqueue_sigaction,NULL);
#endif
handle_ctrl_c();
init_sigaction_with_handler(&sample_sigaction, sample_signal_handler);
sigaction_safe(SIGALRM,&sample_sigaction,NULL);
/* We don't use SA_IGN here because then the ignore action is inherited
by subprocesses, which we don't want. There is a unit test in
io.launcher.unix for this. */
init_sigaction_with_handler(&ignore_sigaction, ignore_signal_handler);
sigaction_safe(SIGPIPE,&ignore_sigaction,NULL);
/* We send SIGUSR2 to the stdin_loop thread to interrupt it on FEP */
sigaction_safe(SIGUSR2,&ignore_sigaction,NULL);
}
/* On Unix, shared fds such as stdin cannot be set to non-blocking mode
(http://homepages.tesco.net/J.deBoynePollard/FGA/dont-set-shared-file-descriptors-to-non-blocking-mode.html)
so we kludge around this by spawning a thread, which waits on a control pipe
for a signal, upon receiving this signal it reads one block of data from stdin
and writes it to a data pipe. Upon completion, it writes a 4-byte integer to
the size pipe, indicating how much data was written to the data pipe.
The read end of the size pipe can be set to non-blocking. */
extern "C" {
int stdin_read;
int stdin_write;
int control_read;
int control_write;
int size_read;
int size_write;
bool stdin_thread_initialized_p = false;
THREADHANDLE stdin_thread;
pthread_mutex_t stdin_mutex;
}
void safe_close(int fd)
{
if(close(fd) < 0)
fatal_error("error closing fd",errno);
}
bool check_write(int fd, void *data, ssize_t size)
{
if(write(fd,data,size) == size)
return true;
else
{
if(errno == EINTR)
return check_write(fd,data,size);
else
return false;
}
}
void safe_write(int fd, void *data, ssize_t size)
{
if(!check_write(fd,data,size))
fatal_error("error writing fd",errno);
}
void safe_write_nonblock(int fd, void *data, ssize_t size)
{
if(!check_write(fd,data,size) && errno != EAGAIN)
fatal_error("error writing fd",errno);
}
bool safe_read(int fd, void *data, ssize_t size)
{
ssize_t bytes = read(fd,data,size);
if(bytes < 0)
{
if(errno == EINTR)
return safe_read(fd,data,size);
else
{
fatal_error("error reading fd",errno);
return false;
}
}
else
return (bytes == size);
}
void *stdin_loop(void *arg)
{
unsigned char buf[4096];
bool loop_running = true;
sigset_t mask;
sigfillset(&mask);
sigdelset(&mask, SIGUSR2);
sigdelset(&mask, SIGTTIN);
sigdelset(&mask, SIGTERM);
sigdelset(&mask, SIGQUIT);
pthread_sigmask(SIG_SETMASK, &mask, NULL);
int unused;
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &unused);
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &unused);
while(loop_running)
{
if(!safe_read(control_read,buf,1))
break;
if(buf[0] != 'X')
fatal_error("stdin_loop: bad data on control fd",buf[0]);
for(;;)
{
/* If we fep, the parent thread will grab stdin_mutex and send us
SIGUSR2 to interrupt the read() call. */
pthread_mutex_lock(&stdin_mutex);
pthread_mutex_unlock(&stdin_mutex);
ssize_t bytes = read(0,buf,sizeof(buf));
if(bytes < 0)
{
if(errno == EINTR)
continue;
else
{
loop_running = false;
break;
}
}
else if(bytes >= 0)
{
safe_write(size_write,&bytes,sizeof(bytes));
if(!check_write(stdin_write,buf,bytes))
loop_running = false;
break;
}
}
}
safe_close(stdin_write);
safe_close(control_read);
return NULL;
}
void factor_vm::open_console()
{
FACTOR_ASSERT(!stdin_thread_initialized_p);
safe_pipe(&control_read,&control_write);
safe_pipe(&size_read,&size_write);
safe_pipe(&stdin_read,&stdin_write);
stdin_thread = start_thread(stdin_loop,NULL);
stdin_thread_initialized_p = true;
pthread_mutex_init(&stdin_mutex, NULL);
}
/* This method is used to kill the stdin_loop before exiting from factor.
A Nvidia driver bug on Linux is the reason this has to be done, see:
http://www.nvnews.net/vbulletin/showthread.php?t=164619 */
void factor_vm::close_console()
{
if (stdin_thread_initialized_p)
pthread_cancel(stdin_thread);
}
void factor_vm::lock_console()
{
FACTOR_ASSERT(stdin_thread_initialized_p);
/* Lock the stdin_mutex and send the stdin_loop thread a signal to interrupt
any read() it has in progress. When the stdin loop iterates again, it will
try to lock the same mutex and wait until unlock_console() is called. */
pthread_mutex_lock(&stdin_mutex);
pthread_kill(stdin_thread, SIGUSR2);
}
void factor_vm::unlock_console()
{
FACTOR_ASSERT(stdin_thread_initialized_p);
pthread_mutex_unlock(&stdin_mutex);
}
void factor_vm::ignore_ctrl_c()
{
sig_t ret;
do
{
ret = signal(SIGINT, SIG_DFL);
}
while(ret == SIG_ERR && errno == EINTR);
}
void factor_vm::handle_ctrl_c()
{
struct sigaction fep_sigaction;
init_sigaction_with_handler(&fep_sigaction, fep_signal_handler);
sigaction_safe(SIGINT,&fep_sigaction,NULL);
}
void abort()
{
sig_t ret;
do
{
ret = signal(SIGABRT, SIG_DFL);
}
while(ret == SIG_ERR && errno == EINTR);
factor_vm::close_console();
::abort();
}
}