factor/basis/math/combinatorics/combinatorics.factor

273 lines
7.5 KiB
Factor

! Copyright (c) 2007-2010 Slava Pestov, Doug Coleman, Aaron Schaefer, John Benediktsson.
! See http://factorcode.org/license.txt for BSD license.
USING: accessors arrays assocs binary-search classes.tuple
combinators fry hints kernel kernel.private locals math
math.functions math.order math.ranges namespaces sequences
sequences.private sorting strings vectors ;
IN: math.combinatorics
<PRIVATE
! Specialized version of nths-unsafe for performance
: (nths-unsafe) ( indices seq -- seq' )
[ { array } declare ] dip
[ [ nth-unsafe ] curry ] keep map-as ; inline
GENERIC: nths-unsafe ( indices seq -- seq' )
M: string nths-unsafe (nths-unsafe) ;
M: array nths-unsafe (nths-unsafe) ;
M: vector nths-unsafe (nths-unsafe) ;
M: iota nths-unsafe (nths-unsafe) ;
M: object nths-unsafe (nths-unsafe) ;
: possible? ( n m -- ? )
0 rot between? ; inline
: twiddle ( n k -- n k )
2dup - dupd > [ dupd - ] when ; inline
PRIVATE>
: factorial ( n -- n! )
dup 1 > [ [1,b] product ] [ drop 1 ] if ;
: nPk ( n k -- nPk )
2dup possible? [ dupd - [a,b) product ] [ 2drop 0 ] if ;
: nCk ( n k -- nCk )
twiddle [ nPk ] keep factorial /i ;
! Factoradic-based permutation methodology
<PRIVATE
: factoradic ( n -- factoradic )
0 [ over 0 > ] [ 1 + [ /mod ] keep swap ] produce reverse! 2nip ;
: bump-indices ( seq n -- )
'[ dup _ >= [ 1 + ] when ] map! drop ; inline
: (>permutation) ( seq n index -- seq )
swap [ dupd head-slice ] dip bump-indices ;
: >permutation ( factoradic -- permutation )
reverse! dup [ (>permutation) ] each-index reverse! ;
: permutation-indices ( n seq -- permutation )
length [ factoradic ] dip 0 pad-head >permutation ;
: permutation-iota ( seq -- <iota> )
length factorial <iota> ; inline
PRIVATE>
: permutation ( n seq -- seq' )
[ permutation-indices ] keep nths-unsafe ;
TUPLE: permutations length seq ;
: <permutations> ( seq -- permutations )
[ length factorial ] keep permutations boa ;
M: permutations length length>> ; inline
M: permutations nth-unsafe seq>> permutation ;
M: permutations hashcode* tuple-hashcode ;
INSTANCE: permutations immutable-sequence
TUPLE: k-permutations length skip k seq ;
:: <k-permutations> ( seq k -- permutations )
seq length :> n
n k nPk :> len
{
{ [ len k [ zero? ] either? ] [ { } ] }
{ [ n k = ] [ seq <permutations> ] }
[ len n factorial over /i k seq k-permutations boa ]
} cond ;
M: k-permutations length length>> ; inline
M: k-permutations nth-unsafe
[ skip>> * ]
[ seq>> [ permutation-indices ] keep ]
[ k>> swap [ head ] dip nths-unsafe ] tri ;
M: k-permutations hashcode* tuple-hashcode ;
INSTANCE: k-permutations immutable-sequence
DEFER: next-permutation
<PRIVATE
: permutations-quot ( seq quot -- seq quot' )
[ [ permutation-iota ] [ length <iota> >array ] [ ] tri ] dip
'[ drop _ [ _ nths-unsafe @ ] keep next-permutation drop ] ; inline
PRIVATE>
: each-permutation ( ... seq quot: ( ... elt -- ... ) -- ... )
permutations-quot each ; inline
: map-permutations ( ... seq quot: ( ... elt -- ... newelt ) -- ... newseq )
permutations-quot map ; inline
: filter-permutations ( ... seq quot: ( ... elt -- ... ? ) -- ... newseq )
selector [ each-permutation ] dip ; inline
: all-permutations ( seq -- seq' )
[ ] map-permutations ;
: all-permutations? ( ... seq quot: ( ... elt -- ... ? ) -- ... ? )
permutations-quot all? ; inline
: find-permutation ( ... seq quot: ( ... elt -- ... ? ) -- ... elt/f )
[ permutations-quot find drop ]
[ drop over [ permutation ] [ 2drop f ] if ] 2bi ; inline
: reduce-permutations ( ... seq identity quot: ( ... prev elt -- ... next ) -- ... result )
swapd each-permutation ; inline
: inverse-permutation ( seq -- permutation )
<enumerated> sort-values keys ;
<PRIVATE
: cut-point ( seq -- n )
[ last ] keep [ [ > ] keep swap ] find-last drop nip ; inline
: greater-from-last ( n seq -- i )
[ nip ] [ nth ] 2bi [ > ] curry find-last drop ; inline
: reverse-tail! ( n seq -- seq )
[ swap 1 + tail-slice reverse! drop ] keep ; inline
: (next-permutation) ( seq -- seq )
dup cut-point [
swap [ greater-from-last ] 2keep
[ exchange ] [ reverse-tail! nip ] 3bi
] [ reverse! ] if* ;
HINTS: (next-permutation) array ;
PRIVATE>
: next-permutation ( seq -- seq )
dup empty? [ (next-permutation) ] unless ;
! Combinadic-based combination methodology
<PRIVATE
! "Algorithm 515: Generation of a Vector from the Lexicographical Index"
! Buckles, B. P., and Lybanon, M. ACM
! Transactions on Mathematical Software, Vol. 3, No. 2, June 1977.
:: combination-indices ( x! p n -- seq )
x 1 + x!
p 0 <array> :> c 0 :> k! 0 :> r!
p 1 - [| i |
i [ 0 ] [ 1 - c nth ] if-zero i c set-nth
[ k x < ] [
i c [ 1 + ] change-nth
n i c nth - p i 1 + - nCk r!
k r + k!
] do while k r - k!
] each-integer
p 2 < [ 0 ] [ p 2 - c nth ] if
p 1 < [ drop ] [ x + k - p 1 - c set-nth ] if
c [ 1 - ] map! ;
PRIVATE>
: combination ( m seq k -- seq' )
swap [ length combination-indices ] [ nths-unsafe ] bi ;
TUPLE: combinations seq k length ;
: <combinations> ( seq k -- combinations )
2dup [ length ] [ nCk ] bi* combinations boa ;
M: combinations length length>> ; inline
M: combinations nth-unsafe [ seq>> ] [ k>> ] bi combination ;
M: combinations hashcode* tuple-hashcode ;
INSTANCE: combinations immutable-sequence
<PRIVATE
: find-max-index ( seq n -- i )
over length - '[ _ + >= ] find-index drop ; inline
: increment-rest ( i seq -- )
[ nth ] [ swap tail-slice ] 2bi
[ drop 1 + dup ] map! 2drop ; inline
: increment-last ( seq -- )
[ [ length 1 - ] keep [ 1 + ] change-nth ] unless-empty ; inline
:: next-combination ( seq n -- seq )
seq n find-max-index [
1 [-] seq increment-rest
] [
seq increment-last
] if* seq ; inline
:: combinations-quot ( seq k quot -- seq quot' )
seq length :> n
n k nCk <iota> k <iota> >array seq quot n
'[ drop _ [ _ nths-unsafe @ ] keep _ next-combination drop ] ; inline
PRIVATE>
: each-combination ( ... seq k quot: ( ... elt -- ... ) -- ... )
combinations-quot each ; inline
: map-combinations ( ... seq k quot: ( ... elt -- ... newelt ) -- ... newseq )
combinations-quot map ; inline
: filter-combinations ( ... seq k quot: ( ... elt -- ... ? ) -- ... newseq )
selector [ each-combination ] dip ; inline
: map>assoc-combinations ( ... seq k quot: ( ... elt -- ... key value ) exemplar -- ... assoc )
[ combinations-quot ] dip map>assoc ; inline
: all-combinations ( seq k -- seq' )
[ ] map-combinations ;
: all-combinations? ( ... seq k quot: ( ... elt -- ... ? ) -- ... ? )
combinations-quot all? ; inline
: find-combination ( ... seq k quot: ( ... elt -- ... ? ) -- ... elt/f )
[ combinations-quot find drop ]
[ drop pick [ combination ] [ 3drop f ] if ] 3bi ; inline
: reduce-combinations ( ... seq k identity quot: ( ... prev elt -- ... next ) -- ... result )
-rotd each-combination ; inline
: all-subsets ( seq -- subsets )
dup length [0,b] [ all-combinations ] with map concat ;
<PRIVATE
:: next-selection ( seq n -- )
1 seq length 1 - [
dup 0 >= [ over 0 = ] [ t ] if
] [
[ seq [ + n /mod ] change-nth-unsafe ] keep 1 -
] do until 2drop ; inline
:: (selections) ( seq n -- selections )
seq length :> len
n 0 <array> :> idx
len n ^ [
idx seq nths-unsafe
idx len next-selection
] replicate ;
PRIVATE>
: selections ( seq n -- selections )
dup 0 > [ (selections) ] [ 2drop { } ] if ;