factor/vm/data_heap.c

372 lines
9.3 KiB
C

#include "master.h"
CELL init_zone(F_ZONE *z, CELL size, CELL start)
{
z->size = size;
z->start = z->here = start;
z->end = start + size;
return z->end;
}
void init_card_decks(void)
{
CELL start = align(data_heap->segment->start,DECK_SIZE);
allot_markers_offset = (CELL)data_heap->allot_markers - (start >> CARD_BITS);
cards_offset = (CELL)data_heap->cards - (start >> CARD_BITS);
decks_offset = (CELL)data_heap->decks - (start >> DECK_BITS);
}
F_DATA_HEAP *alloc_data_heap(CELL gens,
CELL young_size,
CELL aging_size,
CELL tenured_size)
{
young_size = align(young_size,DECK_SIZE);
aging_size = align(aging_size,DECK_SIZE);
tenured_size = align(tenured_size,DECK_SIZE);
F_DATA_HEAP *data_heap = safe_malloc(sizeof(F_DATA_HEAP));
data_heap->young_size = young_size;
data_heap->aging_size = aging_size;
data_heap->tenured_size = tenured_size;
data_heap->gen_count = gens;
CELL total_size;
if(data_heap->gen_count == 2)
total_size = young_size + 2 * tenured_size;
else if(data_heap->gen_count == 3)
total_size = young_size + 2 * aging_size + 2 * tenured_size;
else
{
fatal_error("Invalid number of generations",data_heap->gen_count);
return NULL; /* can't happen */
}
total_size += DECK_SIZE;
data_heap->segment = alloc_segment(total_size);
data_heap->generations = safe_malloc(sizeof(F_ZONE) * data_heap->gen_count);
data_heap->semispaces = safe_malloc(sizeof(F_ZONE) * data_heap->gen_count);
CELL cards_size = total_size >> CARD_BITS;
data_heap->allot_markers = safe_malloc(cards_size);
data_heap->allot_markers_end = data_heap->allot_markers + cards_size;
data_heap->cards = safe_malloc(cards_size);
data_heap->cards_end = data_heap->cards + cards_size;
CELL decks_size = total_size >> DECK_BITS;
data_heap->decks = safe_malloc(decks_size);
data_heap->decks_end = data_heap->decks + decks_size;
CELL alloter = align(data_heap->segment->start,DECK_SIZE);
alloter = init_zone(&data_heap->generations[TENURED],tenured_size,alloter);
alloter = init_zone(&data_heap->semispaces[TENURED],tenured_size,alloter);
if(data_heap->gen_count == 3)
{
alloter = init_zone(&data_heap->generations[AGING],aging_size,alloter);
alloter = init_zone(&data_heap->semispaces[AGING],aging_size,alloter);
}
if(data_heap->gen_count >= 2)
{
alloter = init_zone(&data_heap->generations[NURSERY],young_size,alloter);
alloter = init_zone(&data_heap->semispaces[NURSERY],0,alloter);
}
if(data_heap->segment->end - alloter > DECK_SIZE)
critical_error("Bug in alloc_data_heap",alloter);
return data_heap;
}
F_DATA_HEAP *grow_data_heap(F_DATA_HEAP *data_heap, CELL requested_bytes)
{
CELL new_tenured_size = (data_heap->tenured_size * 2) + requested_bytes;
return alloc_data_heap(data_heap->gen_count,
data_heap->young_size,
data_heap->aging_size,
new_tenured_size);
}
void dealloc_data_heap(F_DATA_HEAP *data_heap)
{
dealloc_segment(data_heap->segment);
free(data_heap->generations);
free(data_heap->semispaces);
free(data_heap->allot_markers);
free(data_heap->cards);
free(data_heap->decks);
free(data_heap);
}
void clear_cards(CELL from, CELL to)
{
/* NOTE: reverse order due to heap layout. */
F_CARD *first_card = ADDR_TO_CARD(data_heap->generations[to].start);
F_CARD *last_card = ADDR_TO_CARD(data_heap->generations[from].end);
memset(first_card,0,last_card - first_card);
}
void clear_decks(CELL from, CELL to)
{
/* NOTE: reverse order due to heap layout. */
F_DECK *first_deck = ADDR_TO_DECK(data_heap->generations[to].start);
F_DECK *last_deck = ADDR_TO_DECK(data_heap->generations[from].end);
memset(first_deck,0,last_deck - first_deck);
}
void clear_allot_markers(CELL from, CELL to)
{
/* NOTE: reverse order due to heap layout. */
F_CARD *first_card = ADDR_TO_ALLOT_MARKER(data_heap->generations[to].start);
F_CARD *last_card = ADDR_TO_ALLOT_MARKER(data_heap->generations[from].end);
memset(first_card,INVALID_ALLOT_MARKER,last_card - first_card);
}
void reset_generation(CELL i)
{
F_ZONE *z = (i == NURSERY ? &nursery : &data_heap->generations[i]);
z->here = z->start;
if(secure_gc)
memset((void*)z->start,69,z->size);
}
/* After garbage collection, any generations which are now empty need to have
their allocation pointers and cards reset. */
void reset_generations(CELL from, CELL to)
{
CELL i;
for(i = from; i <= to; i++)
reset_generation(i);
clear_cards(from,to);
clear_decks(from,to);
clear_allot_markers(from,to);
}
void set_data_heap(F_DATA_HEAP *data_heap_)
{
data_heap = data_heap_;
nursery = data_heap->generations[NURSERY];
init_card_decks();
clear_cards(NURSERY,TENURED);
clear_decks(NURSERY,TENURED);
clear_allot_markers(NURSERY,TENURED);
}
void init_data_heap(CELL gens,
CELL young_size,
CELL aging_size,
CELL tenured_size,
bool secure_gc_)
{
set_data_heap(alloc_data_heap(gens,young_size,aging_size,tenured_size));
gc_locals_region = alloc_segment(getpagesize());
gc_locals = gc_locals_region->start - CELLS;
extra_roots_region = alloc_segment(getpagesize());
extra_roots = extra_roots_region->start - CELLS;
secure_gc = secure_gc_;
}
/* Size of the object pointed to by a tagged pointer */
CELL object_size(CELL tagged)
{
if(immediate_p(tagged))
return 0;
else
return untagged_object_size(UNTAG(tagged));
}
/* Size of the object pointed to by an untagged pointer */
CELL untagged_object_size(CELL pointer)
{
return align8(unaligned_object_size(pointer));
}
/* Size of the data area of an object pointed to by an untagged pointer */
CELL unaligned_object_size(CELL pointer)
{
F_TUPLE *tuple;
F_TUPLE_LAYOUT *layout;
switch(untag_header(get(pointer)))
{
case ARRAY_TYPE:
case BIGNUM_TYPE:
return array_size(array_capacity((F_ARRAY*)pointer));
case BYTE_ARRAY_TYPE:
return byte_array_size(
byte_array_capacity((F_BYTE_ARRAY*)pointer));
case STRING_TYPE:
return string_size(string_capacity((F_STRING*)pointer));
case TUPLE_TYPE:
tuple = untag_object(pointer);
layout = untag_object(tuple->layout);
return tuple_size(layout);
case QUOTATION_TYPE:
return sizeof(F_QUOTATION);
case WORD_TYPE:
return sizeof(F_WORD);
case RATIO_TYPE:
return sizeof(F_RATIO);
case FLOAT_TYPE:
return sizeof(F_FLOAT);
case COMPLEX_TYPE:
return sizeof(F_COMPLEX);
case DLL_TYPE:
return sizeof(F_DLL);
case ALIEN_TYPE:
return sizeof(F_ALIEN);
case WRAPPER_TYPE:
return sizeof(F_WRAPPER);
case CALLSTACK_TYPE:
return callstack_size(
untag_fixnum_fast(((F_CALLSTACK *)pointer)->length));
default:
critical_error("Invalid header",pointer);
return -1; /* can't happen */
}
}
void primitive_size(void)
{
box_unsigned_cell(object_size(dpop()));
}
/* The number of cells from the start of the object which should be scanned by
the GC. Some types have a binary payload at the end (string, word, DLL) which
we ignore. */
CELL binary_payload_start(CELL pointer)
{
F_TUPLE *tuple;
F_TUPLE_LAYOUT *layout;
switch(untag_header(get(pointer)))
{
/* these objects do not refer to other objects at all */
case FLOAT_TYPE:
case BYTE_ARRAY_TYPE:
case BIGNUM_TYPE:
case CALLSTACK_TYPE:
return 0;
/* these objects have some binary data at the end */
case WORD_TYPE:
return sizeof(F_WORD) - CELLS * 3;
case ALIEN_TYPE:
return CELLS * 3;
case DLL_TYPE:
return CELLS * 2;
case QUOTATION_TYPE:
return sizeof(F_QUOTATION) - CELLS * 2;
case STRING_TYPE:
return sizeof(F_STRING);
/* everything else consists entirely of pointers */
case ARRAY_TYPE:
return array_size(array_capacity((F_ARRAY*)pointer));
case TUPLE_TYPE:
tuple = untag_object(pointer);
layout = untag_object(tuple->layout);
return tuple_size(layout);
case RATIO_TYPE:
return sizeof(F_RATIO);
case COMPLEX_TYPE:
return sizeof(F_COMPLEX);
case WRAPPER_TYPE:
return sizeof(F_WRAPPER);
default:
critical_error("Invalid header",pointer);
return -1; /* can't happen */
}
}
/* Push memory usage statistics in data heap */
void primitive_data_room(void)
{
F_ARRAY *a = allot_array(ARRAY_TYPE,data_heap->gen_count * 2,F);
int gen;
dpush(tag_fixnum((data_heap->cards_end - data_heap->cards) >> 10));
dpush(tag_fixnum((data_heap->decks_end - data_heap->decks) >> 10));
for(gen = 0; gen < data_heap->gen_count; gen++)
{
F_ZONE *z = (gen == NURSERY ? &nursery : &data_heap->generations[gen]);
set_array_nth(a,gen * 2,tag_fixnum((z->end - z->here) >> 10));
set_array_nth(a,gen * 2 + 1,tag_fixnum((z->size) >> 10));
}
dpush(tag_object(a));
}
/* Disables GC and activates next-object ( -- obj ) primitive */
void begin_scan(void)
{
heap_scan_ptr = data_heap->generations[TENURED].start;
gc_off = true;
}
void primitive_begin_scan(void)
{
begin_scan();
}
CELL next_object(void)
{
if(!gc_off)
general_error(ERROR_HEAP_SCAN,F,F,NULL);
CELL value = get(heap_scan_ptr);
CELL obj = heap_scan_ptr;
CELL type;
if(heap_scan_ptr >= data_heap->generations[TENURED].here)
return F;
type = untag_header(value);
heap_scan_ptr += untagged_object_size(heap_scan_ptr);
return RETAG(obj,type <= HEADER_TYPE ? type : OBJECT_TYPE);
}
/* Push object at heap scan cursor and advance; pushes f when done */
void primitive_next_object(void)
{
dpush(next_object());
}
/* Re-enables GC */
void primitive_end_scan(void)
{
gc_off = false;
}
CELL find_all_words(void)
{
GROWABLE_ARRAY(words);
begin_scan();
CELL obj;
while((obj = next_object()) != F)
{
if(type_of(obj) == WORD_TYPE)
GROWABLE_ARRAY_ADD(words,obj);
}
/* End heap scan */
gc_off = false;
GROWABLE_ARRAY_TRIM(words);
return words;
}