factor/basis/math/primes/primes.factor

101 lines
2.8 KiB
Factor

! Copyright (C) 2007-2009 Samuel Tardieu.
! See http://factorcode.org/license.txt for BSD license.
USING: combinators combinators.short-circuit fry kernel locals
math math.bitwise math.functions math.order math.primes.erato
math.primes.erato.private math.primes.miller-rabin math.ranges
literals random sequences sets vectors ;
IN: math.primes
<PRIVATE
: look-in-bitmap ( n -- ? )
$[ 8999999 sieve ] marked-unsafe? ; inline
: (prime?) ( n -- ? )
dup 8999999 <= [ look-in-bitmap ] [ miller-rabin ] if ;
: simple? ( n -- ? ) { [ even? ] [ 3 divisor? ] [ 5 divisor? ] } 1|| ;
PRIVATE>
: prime? ( n -- ? )
{
{ [ dup 7 < ] [ { 2 3 5 } member? ] }
{ [ dup simple? ] [ drop f ] }
[ (prime?) ]
} cond ; foldable
: next-prime ( n -- p )
dup 2 < [
drop 2
] [
next-odd [ dup prime? ] [ 2 + ] until
] if ; foldable
<PRIVATE
: <primes-range> ( low high -- range )
[ 3 max dup even? [ 1 + ] when ] dip 2 <range> ;
! In order not to reallocate large vectors, we compute the upper bound
! of the number of primes in a given interval. We use a double inequality given
! by Pierre Dusart in http://www.ams.org/mathscinet-getitem?mr=99d:11133
! for x > 598. Under this limit, we know that there are at most 108 primes.
: upper-pi ( x -- y )
dup log [ / ] [ 1.2762 swap / 1 + ] bi * ceiling ;
: lower-pi ( x -- y )
dup log [ / ] [ 0.992 swap / 1 + ] bi * floor ;
:: <primes-vector> ( low high -- vector )
high upper-pi low lower-pi - >integer
108 10000 clamp <vector>
low 3 < [ 2 suffix! ] when ;
: (primes-between) ( low high -- seq )
[ <primes-range> ] [ <primes-vector> ] 2bi
[ '[ [ prime? ] _ push-if ] each ] keep ;
PRIVATE>
: primes-between ( low high -- seq )
[ ceiling >integer ] [ floor >integer ] bi*
{
{ [ 2dup > ] [ 2drop V{ } clone ] }
{ [ dup 2 = ] [ 2drop V{ 2 } clone ] }
{ [ dup 2 < ] [ 2drop V{ } clone ] }
[ (primes-between) ]
} cond ;
: primes-upto ( n -- seq )
2 swap primes-between ;
: nprimes ( n -- seq )
2 swap [ [ next-prime ] keep ] replicate nip ;
: coprime? ( a b -- ? ) fast-gcd 1 = ; foldable
: random-prime ( numbits -- p )
[ ] [ 2^ ] [ random-bits* next-prime ] tri
2dup < [ 2drop random-prime ] [ 2nip ] if ;
: estimated-primes ( m -- n )
dup log / ; foldable
ERROR: no-relative-prime n ;
: find-relative-prime* ( n guess -- p )
[ dup 1 <= [ no-relative-prime ] when ]
[ >odd dup 1 <= [ drop 3 ] when ] bi*
[ 2dup coprime? ] [ 2 + ] until nip ;
: find-relative-prime ( n -- p )
dup random find-relative-prime* ;
ERROR: too-few-primes n numbits ;
: unique-primes ( n numbits -- seq )
2dup 2^ estimated-primes > [ too-few-primes ] when
2dup [ random-prime ] curry replicate
dup all-unique? [ 2nip ] [ drop unique-primes ] if ;