factor/basis/math/matrices/elimination/elimination.factor

115 lines
2.8 KiB
Factor
Executable File

! Copyright (C) 2006, 2008 Slava Pestov.
! See http://factorcode.org/license.txt for BSD license.
USING: kernel math math.vectors math.matrices namespaces
sequences ;
IN: math.matrices.elimination
SYMBOL: matrix
: with-matrix ( matrix quot -- )
[ swap matrix set call matrix get ] with-scope ; inline
: nth-row ( row# -- seq ) matrix get nth ;
: change-row ( row# quot: ( seq -- seq ) -- )
matrix get swap change-nth ; inline
: exchange-rows ( row# row# -- ) matrix get exchange ;
: rows ( -- n ) matrix get length ;
: cols ( -- n ) 0 nth-row length ;
: skip ( i seq quot -- n )
over [ find-from drop ] dip length or ; inline
: first-col ( row# -- n )
#! First non-zero column
0 swap nth-row [ zero? not ] skip ;
: clear-scale ( col# pivot-row i-row -- n )
[ over ] dip nth dup zero? [
3drop 0
] [
[ nth dup zero? ] dip swap [
2drop 0
] [
swap / neg
] if
] if ;
: (clear-col) ( col# pivot-row i -- )
[ [ clear-scale ] 2keep [ n*v ] dip v+ ] change-row ;
: rows-from ( row# -- slice )
rows dup <slice> ;
: clear-col ( col# row# rows -- )
[ nth-row ] dip [ [ 2dup ] dip (clear-col) ] each 2drop ;
: do-row ( exchange-with row# -- )
[ exchange-rows ] keep
[ first-col ] keep
dup 1+ rows-from clear-col ;
: find-row ( row# quot -- i elt )
[ rows-from ] dip find ; inline
: pivot-row ( col# row# -- n )
[ dupd nth-row nth zero? not ] find-row 2nip ;
: (echelon) ( col# row# -- )
over cols < over rows < and [
2dup pivot-row [ over do-row 1+ ] when*
[ 1+ ] dip (echelon)
] [
2drop
] if ;
: echelon ( matrix -- matrix' )
[ 0 0 (echelon) ] with-matrix ;
: nonzero-rows ( matrix -- matrix' )
[ [ zero? ] all? not ] filter ;
: null/rank ( matrix -- null rank )
echelon dup length swap nonzero-rows length [ - ] keep ;
: leading ( seq -- n elt ) [ zero? not ] find ;
: reduced ( matrix' -- matrix'' )
[
rows <reversed> [
dup nth-row leading drop
dup [ swap dup clear-col ] [ 2drop ] if
] each
] with-matrix ;
: basis-vector ( row col# -- )
[ clone ] dip
[ swap nth neg recip ] 2keep
[ 0 spin set-nth ] 2keep
[ n*v ] dip
matrix get set-nth ;
: nullspace ( matrix -- seq )
echelon reduced dup empty? [
dup first length identity-matrix [
[
dup leading drop
dup [ basis-vector ] [ 2drop ] if
] each
] with-matrix flip nonzero-rows
] unless ;
: 1-pivots ( matrix -- matrix )
[ dup leading nip [ recip v*n ] when* ] map ;
: solution ( matrix -- matrix )
echelon nonzero-rows reduced 1-pivots ;
: inverse ( matrix -- matrix ) ! Assumes an invertible matrix
dup length
[ identity-matrix [ append ] 2map solution ] keep
[ tail ] curry map ;