119 lines
3.0 KiB
Factor
119 lines
3.0 KiB
Factor
! Copyright (C) 2008 Doug Coleman, Slava Pestov, Aaron Schaefer.
|
|
! See http://factorcode.org/license.txt for BSD license.
|
|
USING: combinators.short-circuit kernel math math.constants
|
|
math.functions math.vectors sequences ;
|
|
IN: math.analysis
|
|
|
|
<PRIVATE
|
|
|
|
! http://www.rskey.org/gamma.htm "Lanczos Approximation"
|
|
! n=6: error ~ 3 x 10^-11
|
|
|
|
CONSTANT: gamma-g6 5.15
|
|
|
|
CONSTANT: gamma-p6
|
|
{
|
|
2.50662827563479526904 225.525584619175212544 -268.295973841304927459
|
|
80.9030806934622512966 -5.00757863970517583837 0.0114684895434781459556
|
|
}
|
|
|
|
: gamma-z ( x n -- seq )
|
|
[ + recip ] with { } map-integers 1.0 0 pick set-nth ;
|
|
|
|
: (gamma-lanczos6) ( x -- log[gamma[x+1]] )
|
|
#! log(gamma(x+1)
|
|
[ 0.5 + dup gamma-g6 + [ log * ] keep - ]
|
|
[ 6 gamma-z gamma-p6 v. log ] bi + ;
|
|
|
|
: gamma-lanczos6 ( x -- gamma[x] )
|
|
#! gamma(x) = gamma(x+1) / x
|
|
[ (gamma-lanczos6) e^ ] keep / ;
|
|
|
|
: gammaln-lanczos6 ( x -- gammaln[x] )
|
|
#! log(gamma(x)) = log(gamma(x+1)) - log(x)
|
|
[ (gamma-lanczos6) ] keep log - ;
|
|
|
|
: gamma-neg ( gamma[abs[x]] x -- gamma[x] )
|
|
dup pi * sin * * pi neg swap / ; inline
|
|
|
|
PRIVATE>
|
|
|
|
: gamma ( x -- y )
|
|
#! gamma(x) = integral 0..inf [ t^(x-1) exp(-t) ] dt
|
|
#! gamma(n+1) = n! for n > 0
|
|
dup { [ 0.0 <= ] [ 1.0 mod zero? ] } 1&& [
|
|
drop 1/0.
|
|
] [
|
|
[ abs gamma-lanczos6 ] keep dup 0 > [ drop ] [ gamma-neg ] if
|
|
] if ;
|
|
|
|
: gammaln ( x -- gamma[x] )
|
|
#! gammaln(x) is an alternative when gamma(x)'s range
|
|
#! varies too widely
|
|
dup 0 < [
|
|
drop 1/0.
|
|
] [
|
|
[ abs gammaln-lanczos6 ] keep dup 0 > [ drop ] [ gamma-neg ] if
|
|
] if ;
|
|
|
|
! Forth Scientific Library Algorithm #1
|
|
!
|
|
! Evaluates the Real Exponential Integral,
|
|
! E1(x) = - Ei(-x) = int_x^\infty exp^{-u}/u du for x > 0
|
|
! using a rational approximation
|
|
!
|
|
! Collected Algorithms from ACM, Volume 1 Algorithms 1-220,
|
|
! 1980; Association for Computing Machinery Inc., New York,
|
|
! ISBN 0-89791-017-6
|
|
!
|
|
! (c) Copyright 1994 Everett F. Carter. Permission is granted by the
|
|
! author to use this software for any application provided the
|
|
! copyright notice is preserved.
|
|
|
|
: exp-int ( x -- y )
|
|
#! For real values of x only. Accurate to 7 decimals.
|
|
dup 1.0 < [
|
|
dup 0.00107857 * 0.00976004 -
|
|
over *
|
|
0.05519968 +
|
|
over *
|
|
0.24991055 -
|
|
over *
|
|
0.99999193 +
|
|
over *
|
|
0.57721566 -
|
|
swap log -
|
|
] [
|
|
dup 8.5733287401 +
|
|
over *
|
|
18.059016973 +
|
|
over *
|
|
8.6347608925 +
|
|
over *
|
|
0.2677737343 +
|
|
|
|
over
|
|
dup 9.5733223454 +
|
|
over *
|
|
25.6329561486 +
|
|
over *
|
|
21.0996530827 +
|
|
over *
|
|
3.9584969228 +
|
|
|
|
nip
|
|
/
|
|
over /
|
|
swap -1.0 * e^
|
|
*
|
|
] if ;
|
|
|
|
! James Stirling's approximation for N!:
|
|
! http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Numerical/Stirling/
|
|
|
|
: stirling-fact ( n -- fact )
|
|
[ pi 2 * * sqrt ]
|
|
[ [ e / ] keep ^ ]
|
|
[ 12 * recip 1 + ] tri * * ;
|
|
|