factor/extra/math/analysis/analysis.factor

119 lines
3.0 KiB
Factor

! Copyright (C) 2008 Doug Coleman, Slava Pestov, Aaron Schaefer.
! See http://factorcode.org/license.txt for BSD license.
USING: combinators.short-circuit kernel math math.constants
math.functions math.vectors sequences ;
IN: math.analysis
<PRIVATE
! http://www.rskey.org/gamma.htm "Lanczos Approximation"
! n=6: error ~ 3 x 10^-11
CONSTANT: gamma-g6 5.15
CONSTANT: gamma-p6
{
2.50662827563479526904 225.525584619175212544 -268.295973841304927459
80.9030806934622512966 -5.00757863970517583837 0.0114684895434781459556
}
: gamma-z ( x n -- seq )
[ + recip ] with { } map-integers 1.0 0 pick set-nth ;
: (gamma-lanczos6) ( x -- log[gamma[x+1]] )
#! log(gamma(x+1)
[ 0.5 + dup gamma-g6 + [ log * ] keep - ]
[ 6 gamma-z gamma-p6 v. log ] bi + ;
: gamma-lanczos6 ( x -- gamma[x] )
#! gamma(x) = gamma(x+1) / x
[ (gamma-lanczos6) e^ ] keep / ;
: gammaln-lanczos6 ( x -- gammaln[x] )
#! log(gamma(x)) = log(gamma(x+1)) - log(x)
[ (gamma-lanczos6) ] keep log - ;
: gamma-neg ( gamma[abs[x]] x -- gamma[x] )
dup pi * sin * * pi neg swap / ; inline
PRIVATE>
: gamma ( x -- y )
#! gamma(x) = integral 0..inf [ t^(x-1) exp(-t) ] dt
#! gamma(n+1) = n! for n > 0
dup { [ 0.0 <= ] [ 1.0 mod zero? ] } 1&& [
drop 1/0.
] [
[ abs gamma-lanczos6 ] keep dup 0 > [ drop ] [ gamma-neg ] if
] if ;
: gammaln ( x -- gamma[x] )
#! gammaln(x) is an alternative when gamma(x)'s range
#! varies too widely
dup 0 < [
drop 1/0.
] [
[ abs gammaln-lanczos6 ] keep dup 0 > [ drop ] [ gamma-neg ] if
] if ;
! Forth Scientific Library Algorithm #1
!
! Evaluates the Real Exponential Integral,
! E1(x) = - Ei(-x) = int_x^\infty exp^{-u}/u du for x > 0
! using a rational approximation
!
! Collected Algorithms from ACM, Volume 1 Algorithms 1-220,
! 1980; Association for Computing Machinery Inc., New York,
! ISBN 0-89791-017-6
!
! (c) Copyright 1994 Everett F. Carter. Permission is granted by the
! author to use this software for any application provided the
! copyright notice is preserved.
: exp-int ( x -- y )
#! For real values of x only. Accurate to 7 decimals.
dup 1.0 < [
dup 0.00107857 * 0.00976004 -
over *
0.05519968 +
over *
0.24991055 -
over *
0.99999193 +
over *
0.57721566 -
swap log -
] [
dup 8.5733287401 +
over *
18.059016973 +
over *
8.6347608925 +
over *
0.2677737343 +
over
dup 9.5733223454 +
over *
25.6329561486 +
over *
21.0996530827 +
over *
3.9584969228 +
nip
/
over /
swap -1.0 * e^
*
] if ;
! James Stirling's approximation for N!:
! http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Numerical/Stirling/
: stirling-fact ( n -- fact )
[ pi 2 * * sqrt ]
[ [ e / ] keep ^ ]
[ 12 * recip 1 + ] tri * * ;