factor/vm/image.cpp

371 lines
7.9 KiB
C++
Executable File

#include "master.hpp"
namespace factor
{
/* Certain special objects in the image are known to the runtime */
void factorvm::init_objects(image_header *h)
{
memcpy(userenv,h->userenv,sizeof(userenv));
T = h->t;
bignum_zero = h->bignum_zero;
bignum_pos_one = h->bignum_pos_one;
bignum_neg_one = h->bignum_neg_one;
}
void factorvm::load_data_heap(FILE *file, image_header *h, vm_parameters *p)
{
cell good_size = h->data_size + (1 << 20);
if(good_size > p->tenured_size)
p->tenured_size = good_size;
init_data_heap(p->gen_count,
p->young_size,
p->aging_size,
p->tenured_size,
p->secure_gc);
clear_gc_stats();
zone *tenured = &data->generations[data->tenured()];
fixnum bytes_read = fread((void*)tenured->start,1,h->data_size,file);
if((cell)bytes_read != h->data_size)
{
print_string("truncated image: ");
print_fixnum(bytes_read);
print_string(" bytes read, ");
print_cell(h->data_size);
print_string(" bytes expected\n");
fatal_error("load_data_heap failed",0);
}
tenured->here = tenured->start + h->data_size;
data_relocation_base = h->data_relocation_base;
}
void factorvm::load_code_heap(FILE *file, image_header *h, vm_parameters *p)
{
if(h->code_size > p->code_size)
fatal_error("Code heap too small to fit image",h->code_size);
init_code_heap(p->code_size);
if(h->code_size != 0)
{
size_t bytes_read = fread(first_block(&code),1,h->code_size,file);
if(bytes_read != h->code_size)
{
print_string("truncated image: ");
print_fixnum(bytes_read);
print_string(" bytes read, ");
print_cell(h->code_size);
print_string(" bytes expected\n");
fatal_error("load_code_heap failed",0);
}
}
code_relocation_base = h->code_relocation_base;
build_free_list(&code,h->code_size);
}
/* Save the current image to disk */
bool factorvm::save_image(const vm_char *filename)
{
FILE* file;
image_header h;
file = OPEN_WRITE(filename);
if(file == NULL)
{
print_string("Cannot open image file: "); print_native_string(filename); nl();
print_string(strerror(errno)); nl();
return false;
}
zone *tenured = &data->generations[data->tenured()];
h.magic = image_magic;
h.version = image_version;
h.data_relocation_base = tenured->start;
h.data_size = tenured->here - tenured->start;
h.code_relocation_base = code.seg->start;
h.code_size = heap_size(&code);
h.t = T;
h.bignum_zero = bignum_zero;
h.bignum_pos_one = bignum_pos_one;
h.bignum_neg_one = bignum_neg_one;
for(cell i = 0; i < USER_ENV; i++)
h.userenv[i] = (save_env_p(i) ? userenv[i] : F);
bool ok = true;
if(fwrite(&h,sizeof(image_header),1,file) != 1) ok = false;
if(fwrite((void*)tenured->start,h.data_size,1,file) != 1) ok = false;
if(fwrite(first_block(&code),h.code_size,1,file) != 1) ok = false;
if(fclose(file)) ok = false;
if(!ok)
{
print_string("save-image failed: "); print_string(strerror(errno)); nl();
}
return ok;
}
inline void factorvm::vmprim_save_image()
{
/* do a full GC to push everything into tenured space */
gc();
gc_root<byte_array> path(dpop(),this);
path.untag_check(this);
save_image((vm_char *)(path.untagged() + 1));
}
PRIMITIVE(save_image)
{
PRIMITIVE_GETVM()->vmprim_save_image();
}
inline void factorvm::vmprim_save_image_and_exit()
{
/* We unbox this before doing anything else. This is the only point
where we might throw an error, so we have to throw an error here since
later steps destroy the current image. */
gc_root<byte_array> path(dpop(),this);
path.untag_check(this);
/* strip out userenv data which is set on startup anyway */
for(cell i = 0; i < USER_ENV; i++)
{
if(!save_env_p(i)) userenv[i] = F;
}
/* do a full GC + code heap compaction */
performing_compaction = true;
compact_code_heap();
performing_compaction = false;
/* Save the image */
if(save_image((vm_char *)(path.untagged() + 1)))
exit(0);
else
exit(1);
}
PRIMITIVE(save_image_and_exit)
{
PRIMITIVE_GETVM()->vmprim_save_image_and_exit();
}
void factorvm::data_fixup(cell *cell)
{
if(immediate_p(*cell))
return;
zone *tenured = &data->generations[data->tenured()];
*cell += (tenured->start - data_relocation_base);
}
void data_fixup(cell *cell, factorvm *myvm)
{
return myvm->data_fixup(cell);
}
template <typename TYPE> void factorvm::code_fixup(TYPE **handle)
{
TYPE *ptr = *handle;
TYPE *new_ptr = (TYPE *)(((cell)ptr) + (code.seg->start - code_relocation_base));
*handle = new_ptr;
}
void factorvm::fixup_word(word *word)
{
if(word->code)
code_fixup(&word->code);
if(word->profiling)
code_fixup(&word->profiling);
code_fixup(&word->xt);
}
void factorvm::fixup_quotation(quotation *quot)
{
if(quot->code)
{
code_fixup(&quot->xt);
code_fixup(&quot->code);
}
else
quot->xt = (void *)lazy_jit_compile;
}
void factorvm::fixup_alien(alien *d)
{
d->expired = T;
}
void factorvm::fixup_stack_frame(stack_frame *frame)
{
code_fixup(&frame->xt);
code_fixup(&FRAME_RETURN_ADDRESS(frame));
}
void fixup_stack_frame(stack_frame *frame, factorvm *myvm)
{
return myvm->fixup_stack_frame(frame);
}
void factorvm::fixup_callstack_object(callstack *stack)
{
iterate_callstack_object(stack,factor::fixup_stack_frame);
}
/* Initialize an object in a newly-loaded image */
void factorvm::relocate_object(object *object)
{
cell hi_tag = object->h.hi_tag();
/* Tuple relocation is a bit trickier; we have to fix up the
layout object before we can get the tuple size, so do_slots is
out of the question */
if(hi_tag == TUPLE_TYPE)
{
tuple *t = (tuple *)object;
data_fixup(&t->layout);
cell *scan = t->data();
cell *end = (cell *)((cell)object + untagged_object_size(object));
for(; scan < end; scan++)
data_fixup(scan);
}
else
{
do_slots((cell)object,factor::data_fixup);
switch(hi_tag)
{
case WORD_TYPE:
fixup_word((word *)object);
break;
case QUOTATION_TYPE:
fixup_quotation((quotation *)object);
break;
case DLL_TYPE:
ffi_dlopen((dll *)object);
break;
case ALIEN_TYPE:
fixup_alien((alien *)object);
break;
case CALLSTACK_TYPE:
fixup_callstack_object((callstack *)object);
break;
}
}
}
/* Since the image might have been saved with a different base address than
where it is loaded, we need to fix up pointers in the image. */
void factorvm::relocate_data()
{
cell relocating;
cell i;
for(i = 0; i < USER_ENV; i++)
data_fixup(&userenv[i]);
data_fixup(&T);
data_fixup(&bignum_zero);
data_fixup(&bignum_pos_one);
data_fixup(&bignum_neg_one);
zone *tenured = &data->generations[data->tenured()];
for(relocating = tenured->start;
relocating < tenured->here;
relocating += untagged_object_size((object *)relocating))
{
object *obj = (object *)relocating;
allot_barrier(obj);
relocate_object(obj);
}
}
void factorvm::fixup_code_block(code_block *compiled)
{
/* relocate literal table data */
data_fixup(&compiled->relocation);
data_fixup(&compiled->literals);
relocate_code_block(compiled);
}
void fixup_code_block(code_block *compiled,factorvm *myvm)
{
return myvm->fixup_code_block(compiled);
}
void factorvm::relocate_code()
{
iterate_code_heap(factor::fixup_code_block);
}
/* Read an image file from disk, only done once during startup */
/* This function also initializes the data and code heaps */
void factorvm::load_image(vm_parameters *p)
{
FILE *file = OPEN_READ(p->image_path);
if(file == NULL)
{
print_string("Cannot open image file: "); print_native_string(p->image_path); nl();
print_string(strerror(errno)); nl();
exit(1);
}
image_header h;
if(fread(&h,sizeof(image_header),1,file) != 1)
fatal_error("Cannot read image header",0);
if(h.magic != image_magic)
fatal_error("Bad image: magic number check failed",h.magic);
if(h.version != image_version)
fatal_error("Bad image: version number check failed",h.version);
load_data_heap(file,&h,p);
load_code_heap(file,&h,p);
fclose(file);
init_objects(&h);
relocate_data();
relocate_code();
/* Store image path name */
userenv[IMAGE_ENV] = allot_alien(F,(cell)p->image_path);
}
}