482 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
			
		
		
	
	
			482 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
#include "master.h"
 | 
						|
 | 
						|
/* This malloc-style heap code is reasonably generic. Maybe in the future, it
 | 
						|
will be used for the data heap too, if we ever get incremental
 | 
						|
mark/sweep/compact GC. */
 | 
						|
void new_heap(F_HEAP *heap, CELL size)
 | 
						|
{
 | 
						|
	heap->segment = alloc_segment(align_page(size));
 | 
						|
	if(!heap->segment)
 | 
						|
		fatal_error("Out of memory in new_heap",size);
 | 
						|
	heap->free_list = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate a code heap during startup */
 | 
						|
void init_code_heap(CELL size)
 | 
						|
{
 | 
						|
	new_heap(&code_heap,size);
 | 
						|
}
 | 
						|
 | 
						|
bool in_code_heap_p(CELL ptr)
 | 
						|
{
 | 
						|
	return (ptr >= code_heap.segment->start
 | 
						|
		&& ptr <= code_heap.segment->end);
 | 
						|
}
 | 
						|
 | 
						|
/* If there is no previous block, next_free becomes the head of the free list,
 | 
						|
else its linked in */
 | 
						|
INLINE void update_free_list(F_HEAP *heap, F_BLOCK *prev, F_BLOCK *next_free)
 | 
						|
{
 | 
						|
	if(prev)
 | 
						|
		prev->next_free = next_free;
 | 
						|
	else
 | 
						|
		heap->free_list = next_free;
 | 
						|
}
 | 
						|
 | 
						|
/* Called after reading the code heap from the image file, and after code GC.
 | 
						|
 | 
						|
In the former case, we must add a large free block from compiling.base + size to
 | 
						|
compiling.limit. */
 | 
						|
void build_free_list(F_HEAP *heap, CELL size)
 | 
						|
{
 | 
						|
	F_BLOCK *prev = NULL;
 | 
						|
	F_BLOCK *prev_free = NULL;
 | 
						|
	F_BLOCK *scan = first_block(heap);
 | 
						|
	F_BLOCK *end = (F_BLOCK *)(heap->segment->start + size);
 | 
						|
 | 
						|
	/* Add all free blocks to the free list */
 | 
						|
	while(scan && scan < end)
 | 
						|
	{
 | 
						|
		switch(scan->status)
 | 
						|
		{
 | 
						|
		case B_FREE:
 | 
						|
			update_free_list(heap,prev_free,scan);
 | 
						|
			prev_free = scan;
 | 
						|
			break;
 | 
						|
		case B_ALLOCATED:
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			critical_error("Invalid scan->status",(CELL)scan);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		prev = scan;
 | 
						|
		scan = next_block(heap,scan);
 | 
						|
	}
 | 
						|
 | 
						|
	/* If there is room at the end of the heap, add a free block. This
 | 
						|
	branch is only taken after loading a new image, not after code GC */
 | 
						|
	if((CELL)(end + 1) <= heap->segment->end)
 | 
						|
	{
 | 
						|
		end->status = B_FREE;
 | 
						|
		end->next_free = NULL;
 | 
						|
		end->size = heap->segment->end - (CELL)end;
 | 
						|
 | 
						|
		/* add final free block */
 | 
						|
		update_free_list(heap,prev_free,end);
 | 
						|
	}
 | 
						|
	/* This branch is taken if the newly loaded image fits exactly, or
 | 
						|
	after code GC */
 | 
						|
	else
 | 
						|
	{
 | 
						|
		/* even if there's no room at the end of the heap for a new
 | 
						|
		free block, we might have to jigger it up by a few bytes in
 | 
						|
		case prev + prev->size */
 | 
						|
		if(prev)
 | 
						|
			prev->size = heap->segment->end - (CELL)prev;
 | 
						|
 | 
						|
		/* this is the last free block */
 | 
						|
		update_free_list(heap,prev_free,NULL);
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate a block of memory from the mark and sweep GC heap */
 | 
						|
CELL heap_allot(F_HEAP *heap, CELL size)
 | 
						|
{
 | 
						|
	F_BLOCK *prev = NULL;
 | 
						|
	F_BLOCK *scan = heap->free_list;
 | 
						|
 | 
						|
	size = (size + 31) & ~31;
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		CELL this_size = scan->size - sizeof(F_BLOCK);
 | 
						|
 | 
						|
		if(scan->status != B_FREE)
 | 
						|
			critical_error("Invalid block in free list",(CELL)scan);
 | 
						|
 | 
						|
		if(this_size < size)
 | 
						|
		{
 | 
						|
			prev = scan;
 | 
						|
			scan = scan->next_free;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* we found a candidate block */
 | 
						|
		F_BLOCK *next_free;
 | 
						|
 | 
						|
		if(this_size - size <= sizeof(F_BLOCK))
 | 
						|
		{
 | 
						|
			/* too small to be split */
 | 
						|
			next_free = scan->next_free;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			/* split the block in two */
 | 
						|
			CELL new_size = size + sizeof(F_BLOCK);
 | 
						|
			F_BLOCK *split = (F_BLOCK *)((CELL)scan + new_size);
 | 
						|
			split->status = B_FREE;
 | 
						|
			split->size = scan->size - new_size;
 | 
						|
			split->next_free = scan->next_free;
 | 
						|
			scan->size = new_size;
 | 
						|
			next_free = split;
 | 
						|
		}
 | 
						|
 | 
						|
		/* update the free list */
 | 
						|
		update_free_list(heap,prev,next_free);
 | 
						|
 | 
						|
		/* this is our new block */
 | 
						|
		scan->status = B_ALLOCATED;
 | 
						|
 | 
						|
		return (CELL)(scan + 1);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* If in the middle of code GC, we have to grow the heap, GC restarts from
 | 
						|
scratch, so we have to unmark any marked blocks. */
 | 
						|
void unmark_marked(F_HEAP *heap)
 | 
						|
{
 | 
						|
	F_BLOCK *scan = first_block(heap);
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		if(scan->status == B_MARKED)
 | 
						|
			scan->status = B_ALLOCATED;
 | 
						|
 | 
						|
		scan = next_block(heap,scan);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* After code GC, all referenced code blocks have status set to B_MARKED, so any
 | 
						|
which are allocated and not marked can be reclaimed. */
 | 
						|
void free_unmarked(F_HEAP *heap)
 | 
						|
{
 | 
						|
	F_BLOCK *prev = NULL;
 | 
						|
	F_BLOCK *scan = first_block(heap);
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		switch(scan->status)
 | 
						|
		{
 | 
						|
		case B_ALLOCATED:
 | 
						|
			if(prev && prev->status == B_FREE)
 | 
						|
				prev->size += scan->size;
 | 
						|
			else
 | 
						|
			{
 | 
						|
				scan->status = B_FREE;
 | 
						|
				prev = scan;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case B_FREE:
 | 
						|
			if(prev && prev->status == B_FREE)
 | 
						|
				prev->size += scan->size;
 | 
						|
			break;
 | 
						|
		case B_MARKED:
 | 
						|
			scan->status = B_ALLOCATED;
 | 
						|
			prev = scan;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			critical_error("Invalid scan->status",(CELL)scan);
 | 
						|
		}
 | 
						|
 | 
						|
		scan = next_block(heap,scan);
 | 
						|
	}
 | 
						|
 | 
						|
	build_free_list(heap,heap->segment->size);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute total sum of sizes of free blocks, and size of largest free block */
 | 
						|
void heap_usage(F_HEAP *heap, CELL *used, CELL *total_free, CELL *max_free)
 | 
						|
{
 | 
						|
	*used = 0;
 | 
						|
	*total_free = 0;
 | 
						|
	*max_free = 0;
 | 
						|
 | 
						|
	F_BLOCK *scan = first_block(heap);
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		switch(scan->status)
 | 
						|
		{
 | 
						|
		case B_ALLOCATED:
 | 
						|
			*used += scan->size;
 | 
						|
			break;
 | 
						|
		case B_FREE:
 | 
						|
			*total_free += scan->size;
 | 
						|
			if(scan->size > *max_free)
 | 
						|
				*max_free = scan->size;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			critical_error("Invalid scan->status",(CELL)scan);
 | 
						|
		}
 | 
						|
 | 
						|
		scan = next_block(heap,scan);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* The size of the heap, not including the last block if it's free */
 | 
						|
CELL heap_size(F_HEAP *heap)
 | 
						|
{
 | 
						|
	F_BLOCK *scan = first_block(heap);
 | 
						|
 | 
						|
	while(next_block(heap,scan) != NULL)
 | 
						|
		scan = next_block(heap,scan);
 | 
						|
 | 
						|
	/* this is the last block in the heap, and it is free */
 | 
						|
	if(scan->status == B_FREE)
 | 
						|
		return (CELL)scan - heap->segment->start;
 | 
						|
	/* otherwise the last block is allocated */
 | 
						|
	else
 | 
						|
		return heap->segment->size;
 | 
						|
}
 | 
						|
 | 
						|
/* Apply a function to every code block */
 | 
						|
void iterate_code_heap(CODE_HEAP_ITERATOR iter)
 | 
						|
{
 | 
						|
	F_BLOCK *scan = first_block(&code_heap);
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		if(scan->status != B_FREE)
 | 
						|
			iterate_code_heap_step(block_to_compiled(scan),iter);
 | 
						|
		scan = next_block(&code_heap,scan);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Copy all literals referenced from a code block to newspace */
 | 
						|
void collect_literals_step(F_COMPILED *compiled, CELL code_start, CELL literals_start)
 | 
						|
{
 | 
						|
	CELL scan;
 | 
						|
	CELL literal_end = literals_start + compiled->literals_length;
 | 
						|
 | 
						|
	copy_handle(&compiled->relocation);
 | 
						|
 | 
						|
	for(scan = literals_start; scan < literal_end; scan += CELLS)
 | 
						|
		copy_handle((CELL*)scan);
 | 
						|
}
 | 
						|
 | 
						|
/* Copy literals referenced from all code blocks to newspace */
 | 
						|
void collect_literals(void)
 | 
						|
{
 | 
						|
	iterate_code_heap(collect_literals_step);
 | 
						|
}
 | 
						|
 | 
						|
/* Mark all XTs and literals referenced from a word XT */
 | 
						|
void recursive_mark(F_BLOCK *block)
 | 
						|
{
 | 
						|
	/* If already marked, do nothing */
 | 
						|
	switch(block->status)
 | 
						|
	{
 | 
						|
	case B_MARKED:
 | 
						|
		return;
 | 
						|
	case B_ALLOCATED:
 | 
						|
		block->status = B_MARKED;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		critical_error("Marking the wrong block",(CELL)block);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	F_COMPILED *compiled = block_to_compiled(block);
 | 
						|
	iterate_code_heap_step(compiled,collect_literals_step);
 | 
						|
}
 | 
						|
 | 
						|
/* Push the free space and total size of the code heap */
 | 
						|
DEFINE_PRIMITIVE(code_room)
 | 
						|
{
 | 
						|
	CELL used, total_free, max_free;
 | 
						|
	heap_usage(&code_heap,&used,&total_free,&max_free);
 | 
						|
	dpush(tag_fixnum((code_heap.segment->size) / 1024));
 | 
						|
	dpush(tag_fixnum(used / 1024));
 | 
						|
	dpush(tag_fixnum(total_free / 1024));
 | 
						|
	dpush(tag_fixnum(max_free / 1024));
 | 
						|
}
 | 
						|
 | 
						|
/* Dump all code blocks for debugging */
 | 
						|
void dump_heap(F_HEAP *heap)
 | 
						|
{
 | 
						|
	CELL size = 0;
 | 
						|
 | 
						|
	F_BLOCK *scan = first_block(heap);
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		char *status;
 | 
						|
		switch(scan->status)
 | 
						|
		{
 | 
						|
		case B_FREE:
 | 
						|
			status = "free";
 | 
						|
			break;
 | 
						|
		case B_ALLOCATED:
 | 
						|
			size += object_size(block_to_compiled(scan)->relocation);
 | 
						|
			status = "allocated";
 | 
						|
			break;
 | 
						|
		case B_MARKED:
 | 
						|
			size += object_size(block_to_compiled(scan)->relocation);
 | 
						|
			status = "marked";
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			status = "invalid";
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		fprintf(stderr,"%lx %lx %s\n",(CELL)scan,scan->size,status);
 | 
						|
 | 
						|
		scan = next_block(heap,scan);
 | 
						|
	}
 | 
						|
	
 | 
						|
	printf("%ld bytes of relocation data\n",size);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute where each block is going to go, after compaction */
 | 
						|
CELL compute_heap_forwarding(F_HEAP *heap)
 | 
						|
{
 | 
						|
	F_BLOCK *scan = first_block(heap);
 | 
						|
	CELL address = (CELL)first_block(heap);
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		if(scan->status == B_ALLOCATED)
 | 
						|
		{
 | 
						|
			scan->forwarding = (F_BLOCK *)address;
 | 
						|
			address += scan->size;
 | 
						|
		}
 | 
						|
		else if(scan->status == B_MARKED)
 | 
						|
			critical_error("Why is the block marked?",0);
 | 
						|
 | 
						|
		scan = next_block(heap,scan);
 | 
						|
	}
 | 
						|
 | 
						|
	return address - heap->segment->start;
 | 
						|
}
 | 
						|
 | 
						|
F_COMPILED *forward_xt(F_COMPILED *compiled)
 | 
						|
{
 | 
						|
	return block_to_compiled(compiled_to_block(compiled)->forwarding);
 | 
						|
}
 | 
						|
 | 
						|
void forward_frame_xt(F_STACK_FRAME *frame)
 | 
						|
{
 | 
						|
	CELL offset = (CELL)FRAME_RETURN_ADDRESS(frame) - (CELL)frame_code(frame);
 | 
						|
	F_COMPILED *forwarded = forward_xt(frame_code(frame));
 | 
						|
	frame->xt = (XT)(forwarded + 1);
 | 
						|
	FRAME_RETURN_ADDRESS(frame) = (XT)((CELL)forwarded + offset);
 | 
						|
}
 | 
						|
 | 
						|
void forward_object_xts(void)
 | 
						|
{
 | 
						|
	begin_scan();
 | 
						|
 | 
						|
	CELL obj;
 | 
						|
 | 
						|
	while((obj = next_object()) != F)
 | 
						|
	{
 | 
						|
		if(type_of(obj) == WORD_TYPE)
 | 
						|
		{
 | 
						|
			F_WORD *word = untag_object(obj);
 | 
						|
 | 
						|
			word->code = forward_xt(word->code);
 | 
						|
			if(word->profiling)
 | 
						|
				word->profiling = forward_xt(word->profiling);
 | 
						|
		}
 | 
						|
		else if(type_of(obj) == QUOTATION_TYPE)
 | 
						|
		{
 | 
						|
			F_QUOTATION *quot = untag_object(obj);
 | 
						|
 | 
						|
			if(quot->compiledp != F)
 | 
						|
				quot->code = forward_xt(quot->code);
 | 
						|
		}
 | 
						|
		else if(type_of(obj) == CALLSTACK_TYPE)
 | 
						|
		{
 | 
						|
			F_CALLSTACK *stack = untag_object(obj);
 | 
						|
			iterate_callstack_object(stack,forward_frame_xt);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* End the heap scan */
 | 
						|
	gc_off = false;
 | 
						|
}
 | 
						|
 | 
						|
/* Set the XT fields now that the heap has been compacted */
 | 
						|
void fixup_object_xts(void)
 | 
						|
{
 | 
						|
	begin_scan();
 | 
						|
 | 
						|
	CELL obj;
 | 
						|
 | 
						|
	while((obj = next_object()) != F)
 | 
						|
	{
 | 
						|
		if(type_of(obj) == WORD_TYPE)
 | 
						|
		{
 | 
						|
			F_WORD *word = untag_object(obj);
 | 
						|
			update_word_xt(word);
 | 
						|
		}
 | 
						|
		else if(type_of(obj) == QUOTATION_TYPE)
 | 
						|
		{
 | 
						|
			F_QUOTATION *quot = untag_object(obj);
 | 
						|
 | 
						|
			if(quot->compiledp != F)
 | 
						|
				set_quot_xt(quot,quot->code);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* End the heap scan */
 | 
						|
	gc_off = false;
 | 
						|
}
 | 
						|
 | 
						|
void compact_heap(F_HEAP *heap)
 | 
						|
{
 | 
						|
	F_BLOCK *scan = first_block(heap);
 | 
						|
 | 
						|
	while(scan)
 | 
						|
	{
 | 
						|
		F_BLOCK *next = next_block(heap,scan);
 | 
						|
 | 
						|
		if(scan->status == B_ALLOCATED && scan != scan->forwarding)
 | 
						|
			memcpy(scan->forwarding,scan,scan->size);
 | 
						|
		scan = next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Move all free space to the end of the code heap. This is not very efficient,
 | 
						|
since it makes several passes over the code and data heaps, but we only ever
 | 
						|
do this before saving a deployed image and exiting, so performaance is not
 | 
						|
critical here */
 | 
						|
void compact_code_heap(void)
 | 
						|
{
 | 
						|
	/* Free all unreachable code blocks */
 | 
						|
	gc();
 | 
						|
 | 
						|
	fprintf(stderr,"*** Code heap compaction...\n");
 | 
						|
	fflush(stderr);
 | 
						|
 | 
						|
	/* Figure out where the code heap blocks are going to end up */
 | 
						|
	CELL size = compute_heap_forwarding(&code_heap);
 | 
						|
 | 
						|
	/* Update word and quotation code pointers */
 | 
						|
	forward_object_xts();
 | 
						|
 | 
						|
	/* Actually perform the compaction */
 | 
						|
	compact_heap(&code_heap);
 | 
						|
 | 
						|
	/* Update word and quotation XTs */
 | 
						|
	fixup_object_xts();
 | 
						|
 | 
						|
	/* Now update the free list; there will be a single free block at
 | 
						|
	the end */
 | 
						|
	build_free_list(&code_heap,size);
 | 
						|
}
 |