factor/extra/math/factorials/factorials.factor

121 lines
2.8 KiB
Factor

! Copyright (C) 2013 John Benediktsson
! See http://factorcode.org/license.txt for BSD license
USING: combinators combinators.short-circuit fry kernel math
math.functions math.primes math.ranges memoize sequences ;
IN: math.factorials
MEMO: factorial ( n -- n! )
dup 1 > [ [1,b] product ] [ drop 1 ] if ;
ALIAS: n! factorial
: factorials ( n -- seq )
1 swap [0,b] [ dup 1 > [ * ] [ drop ] if dup ] map nip ;
MEMO: double-factorial ( n -- n!! )
dup [ even? ] [ 0 < ] bi [
[ drop 1/0. ] [
2 + -1 swap -2 <range> product recip
] if
] [
2 3 ? swap 2 <range> product
] if ;
ALIAS: n!! double-factorial
: factorial/ ( n k -- n!/k! )
{
{ [ dup 1 <= ] [ drop factorial ] }
{ [ over 1 <= ] [ nip factorial recip ] }
[
2dup < [ t ] [ swap f ] if
[ (a,b] product ] dip [ recip ] when
]
} cond ;
: rising-factorial ( x n -- x(n) )
{
{ 1 [ ] }
{ 0 [ drop 0 ] }
[
dup 0 < [ neg [ + ] keep t ] [ f ] if
[ dupd + [a,b) product ] dip
[ recip ] when
]
} case ;
ALIAS: pochhammer rising-factorial
: falling-factorial ( x n -- (x)n )
{
{ 1 [ ] }
{ 0 [ drop 0 ] }
[
dup 0 < [ neg [ + ] keep t ] [ f ] if
[ dupd - swap (a,b] product ] dip
[ recip ] when
]
} case ;
: factorial-power ( x n h -- (x)n(h) )
{
{ 1 [ falling-factorial ] }
{ 0 [ ^ ] }
[
over 0 < [
[ [ nip + ] [ swap neg * + ] 3bi ] keep
<range> product recip
] [
neg [ [ dupd 1 - ] [ * ] bi* + ] keep
<range> product
] if
]
} case ;
: primorial ( n -- p# )
dup 0 > [ nprimes product ] [ drop 1 ] if ;
: multifactorial ( n k -- n!(k) )
2dup >= [
dupd [ - ] keep multifactorial *
] [ 2drop 1 ] if ; inline recursive
: quadruple-factorial ( n -- m )
[ 2 * ] keep factorial/ ;
: super-factorial ( n -- m )
dup 1 > [
[1,b] [ factorial ] [ * ] map-reduce
] [ drop 1 ] if ;
: hyper-factorial ( n -- m )
dup 1 > [
[1,b] [ dup ^ ] [ * ] map-reduce
] [ drop 1 ] if ;
: alternating-factorial ( n -- m )
dup 1 > [
[ [1,b] ] keep even? '[
[ factorial ] [ odd? _ = ] bi [ neg ] when
] map-sum
] [ drop 1 ] if ;
: exponential-factorial ( n -- m )
dup 1 > [ [1,b] 1 [ swap ^ ] reduce ] [ drop 1 ] if ;
<PRIVATE
: -prime? ( n quot: ( n -- m ) -- ? )
[ 1 1 [ pick over - 1 <= ] ] dip
'[ drop [ 1 + ] _ bi ] until nip - abs 1 = ; inline
PRIVATE>
: factorial-prime? ( n -- ? )
{ [ prime? ] [ [ factorial ] -prime? ] } 1&& ;
: primorial-prime? ( n -- ? )
{ [ prime? ] [ 2 > ] [ [ primorial ] -prime? ] } 1&& ;